3,590 research outputs found

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    THE PERFORMANCE OF SOFT CHEKPOINTING APPROACH IN MOBILE COMPUTING SYSTEMS

    Get PDF
    Mobile computing raises many new issues such as lack of stable storage, low bandwidth of wireless channel, high mobility, and limited battery life. These new issues make traditional checkpointing algorithms unsuitable. Coordinated checkpointing is an attractive approach for transparently adding fault tolerance to distributed applications since it avoids domino effects and minimizes the stable storage requirement. However, it suffers from high overhead associated with the checkpointing process in mobile computing systems. In literature mostly, two approaches have been used to reduce the overhead: First is to minimize the number of synchronization messages and the number of checkpoints; the other is to make the checkpointing process nonblocking. Since MHs are prone to failure, so they have to transfer a large amount of checkpoint data and control information to its local MSS which increases bandwidth overhead. In this paper, we introduce the concept of 201C;Soft checkpoint201D; which is neither a tentative checkpoint nor a permanent checkpoint, to design efficient checkpointing algorithms for mobile computing systems. Soft checkpoints can be saved anywhere, e.g., the main memory or local disk of MHs. Before disconnecting from the MSS, these soft checkpoints are converted to hard checkpoints and are sent to MSSs stable storage. In this way, taking a soft checkpoint avoids the overhead of transferring large amounts of data to the stable storage at MSSs over the wireless network. We have also shown that our soft checkpointing scheme also adapts its behaviour to the characteristics of network

    Reliable Fault Tolerance System for Service Composition in Mobile Ad Hoc Network

    Get PDF
    A Due to the rapid development of smart processing mobile devices, Mobile applications are exploring the use of web services in MANETs to satisfy the user needs. Complex user needs are satisfied by the service composition where a complex service is created by combining one or more atomic services. Service composition has a significant challenge in MANETs due to its limited bandwidth, constrained energy sources, dynamic node movement and often suffers from node failures. These constraints increase the failure rate of service composition. To overcome these, we propose Reliable Fault Tolerant System for Service Composition in MANETs (RFTSC) which makes use of the checkpointing technique for service composition in MANETs. We propose fault policies for each fault in service composition when the faults occur. Failure of services in the service composition process is recovered locally by making use of Checkpointing system and by using discovered services which satisfies the QoS constraints. A Multi-Service Tree (MST) is proposed to recover failed services with O(1) time complexity. Simulation result shows that the proposed approach is efficient when compared to existing approaches

    A Survey of Checkpointing Algorithms in Mobile Ad Hoc Network

    Get PDF
    Checkpoint is defined as a fault tolerant technique that is a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. If there is a failure, computation may be restarted from the current checkpoint instead of repeating the computation from beginning. Checkpoint based rollback recovery is one of the widely used technique used in various areas like scientific computing, database, telecommunication and critical applications in distributed and mobile ad hoc network. The mobile ad hoc network architecture is one consisting of a set of self configure mobile hosts capable of communicating with each other without the assistance of base stations. The main problems of this environment are insufficient power and limited storage capacity, so the checkpointing is major challenge in mobile ad hoc network. This paper presents the review of the algorithms, which have been reported for checkpointing approaches in mobile ad hoc network

    High available and fault tolerant mobile communications infrastructure

    Get PDF
    • …
    corecore