38,106 research outputs found

    Trojans in Early Design Steps—An Emerging Threat

    Get PDF
    Hardware Trojans inserted by malicious foundries during integrated circuit manufacturing have received substantial attention in recent years. In this paper, we focus on a different type of hardware Trojan threats: attacks in the early steps of design process. We show that third-party intellectual property cores and CAD tools constitute realistic attack surfaces and that even system specification can be targeted by adversaries. We discuss the devastating damage potential of such attacks, the applicable countermeasures against them and their deficiencies

    Octopus: A Secure and Anonymous DHT Lookup

    Full text link
    Distributed Hash Table (DHT) lookup is a core technique in structured peer-to-peer (P2P) networks. Its decentralized nature introduces security and privacy vulnerabilities for applications built on top of them; we thus set out to design a lookup mechanism achieving both security and anonymity, heretofore an open problem. We present Octopus, a novel DHT lookup which provides strong guarantees for both security and anonymity. Octopus uses attacker identification mechanisms to discover and remove malicious nodes, severely limiting an adversary's ability to carry out active attacks, and splits lookup queries over separate anonymous paths and introduces dummy queries to achieve high levels of anonymity. We analyze the security of Octopus by developing an event-based simulator to show that the attacker discovery mechanisms can rapidly identify malicious nodes with low error rate. We calculate the anonymity of Octopus using probabilistic modeling and show that Octopus can achieve near-optimal anonymity. We evaluate Octopus's efficiency on Planetlab with 207 nodes and show that Octopus has reasonable lookup latency and manageable communication overhead

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Soft Constraint Programming to Analysing Security Protocols

    Full text link
    Security protocols stipulate how the remote principals of a computer network should interact in order to obtain specific security goals. The crucial goals of confidentiality and authentication may be achieved in various forms, each of different strength. Using soft (rather than crisp) constraints, we develop a uniform formal notion for the two goals. They are no longer formalised as mere yes/no properties as in the existing literature, but gain an extra parameter, the security level. For example, different messages can enjoy different levels of confidentiality, or a principal can achieve different levels of authentication with different principals. The goals are formalised within a general framework for protocol analysis that is amenable to mechanisation by model checking. Following the application of the framework to analysing the asymmetric Needham-Schroeder protocol, we have recently discovered a new attack on that protocol as a form of retaliation by principals who have been attacked previously. Having commented on that attack, we then demonstrate the framework on a bigger, largely deployed protocol consisting of three phases, Kerberos.Comment: 29 pages, To appear in Theory and Practice of Logic Programming (TPLP) Paper for Special Issue (Verification and Computational Logic

    User experiences of TORPEDO: TOoltip-poweRed Phishing Email DetectiOn

    Get PDF
    We propose a concept called TORPEDO to improve phish detection by providing just-in-time and just-in-place trustworthy tooltips. These help people to identify phish links embedded in emails. TORPEDO's tooltips contain the actual URL with the domain highlighted. Link activation is delayed for a short period, giving the person time to inspect the URL before they click on a link. Furthermore, TORPEDO provides an information diagram to explain phish detection. We evaluated TORPEDO's effectiveness, as compared to the worst case “status bar” as provided by other Web email interfaces. People using TORPEDO performed significantly better in detecting phishes and identifying legitimate emails (85.17% versus 43.31% correct answers for phish). We then carried out a field study with a number of TORPEDO users to explore actual user experiences of TORPEDO. We conclude the paper by reporting on the outcome of this field study and suggest improvements based on the feedback from the field study participants
    • …
    corecore