15,587 research outputs found

    Validation & Verification of an EDA automated synthesis tool

    Get PDF
    Reliability and correctness are two mandatory features for automated synthesis tools. To reach the goals several campaigns of Validation and Verification (V&V) are needed. The paper presents the extensive efforts set up to prove the correctness of a newly developed EDA automated synthesis tool. The target tool, MarciaTesta, is a multi-platform automatic generator of test programs for microprocessors' caches. Getting in input the selected March Test and some architectural details about the target cache memory, the tool automatically generates the assembly level program to be run as Software Based Self-Testing (SBST). The equivalence between the original March Test, the automatically generated Assembly program, and the intermediate C/C++ program have been proved resorting to sophisticated logging mechanisms. A set of proved libraries has been generated and extensively used during the tool development. A detailed analysis of the lessons learned is reporte

    Relational Symbolic Execution

    Full text link
    Symbolic execution is a classical program analysis technique used to show that programs satisfy or violate given specifications. In this work we generalize symbolic execution to support program analysis for relational specifications in the form of relational properties - these are properties about two runs of two programs on related inputs, or about two executions of a single program on related inputs. Relational properties are useful to formalize notions in security and privacy, and to reason about program optimizations. We design a relational symbolic execution engine, named RelSym which supports interactive refutation, as well as proving of relational properties for programs written in a language with arrays and for-like loops

    Types for Location and Data Security in Cloud Environments

    Get PDF
    Cloud service providers are often trusted to be genuine, the damage caused by being discovered to be attacking their own customers outweighs any benefits such attacks could reap. On the other hand, it is expected that some cloud service users may be actively malicious. In such an open system, each location may run code which has been developed independently of other locations (and which may be secret). In this paper, we present a typed language which ensures that the access restrictions put on data on a particular device will be observed by all other devices running typed code. Untyped, compromised devices can still interact with typed devices without being able to violate the policies, except in the case when a policy directly places trust in untyped locations. Importantly, our type system does not need a middleware layer or all users to register with a preexisting PKI, and it allows for devices to dynamically create new identities. The confidentiality property guaranteed by the language is defined for any kind of intruder: we consider labeled bisimilarity i.e. an attacker cannot distinguish two scenarios that differ by the change of a protected value. This shows our main result that, for a device that runs well typed code and only places trust in other well typed devices, programming errors cannot cause a data leakage.Comment: Short version to appear in Computer Security Foundations Symposium (CSF'17), August 201

    Towards Reversible Sessions

    Full text link
    In this work, we incorporate reversibility into structured communication-based programming, to allow parties of a session to automatically undo, in a rollback fashion, the effect of previously executed interactions. This permits taking different computation paths along the same session, as well as reverting the whole session and starting a new one. Our aim is to define a theoretical basis for examining the interplay in concurrent systems between reversible computation and session-based interaction. We thus enrich a session-based variant of pi-calculus with memory devices, dedicated to keep track of the computation history of sessions in order to reverse it. We discuss our initial investigation concerning the definition of a session type discipline for the proposed reversible calculus, and its practical advantages for static verification of safe composition in communication-centric distributed software performing reversible computations.Comment: In Proceedings PLACES 2014, arXiv:1406.331

    Future-based Static Analysis of Message Passing Programs

    Get PDF
    Message passing is widely used in industry to develop programs consisting of several distributed communicating components. Developing functionally correct message passing software is very challenging due to the concurrent nature of message exchanges. Nonetheless, many safety-critical applications rely on the message passing paradigm, including air traffic control systems and emergency services, which makes proving their correctness crucial. We focus on the modular verification of MPI programs by statically verifying concrete Java code. We use separation logic to reason about local correctness and define abstractions of the communication protocol in the process algebra used by mCRL2. We call these abstractions futures as they predict how components will interact during program execution. We establish a provable link between futures and program code and analyse the abstract futures via model checking to prove global correctness. Finally, we verify a leader election protocol to demonstrate our approach.Comment: In Proceedings PLACES 2016, arXiv:1606.0540
    • 

    corecore