1,463 research outputs found

    Checking sequence construction using adaptive and preset distinguishing sequences

    Get PDF
    Methods for testing from finite state machine-based specifications often require the existence of a preset distinguishing sequence for constructing checking sequences. It has been shown that an adaptive distinguishing sequence is sufficient for these methods. This result is significant because adaptive distinguishing sequences are strictly more common and up to exponentially shorter than preset ones. However, there has been no study on the actual effect of using adaptive distinguishing sequences on the length of checking sequences. This paper describes experiments that show that checking sequences constructed using adaptive distinguishing sequences are almost consistently shorter than those based on preset distinguishing sequences. This is investigated for three different checking sequence generation methods and the results obtained from an extensive experimental study are given

    Distinguishing sequences for partially specified FSMs

    Get PDF
    Distinguishing Sequences (DSs) are used inmany Finite State Machine (FSM) based test techniques. Although Partially Specified FSMs (PSFSMs) generalise FSMs, the computational complexity of constructing Adaptive and Preset DSs (ADSs/PDSs) for PSFSMs has not been addressed. This paper shows that it is possible to check the existence of an ADS in polynomial time but the corresponding problem for PDSs is PSPACE-complete. We also report on the results of experiments with benchmarks and over 8 * 106 PSFSMs. © 2014 Springer International Publishing

    Using a SAT solver to generate checking sequences

    Get PDF
    Methods for software testing based on Finite State Machines (FSMs) have been researched since the early 60’s. Many of these methods are about generating a checking sequence from a given FSM which is an input sequence that determines whether an implementation of the FSM is faulty or correct. In this paper, we consider one of these methods, which constructs a checking sequence by reducing the problem of generating a checking sequence to finding a Chinese rural postman tour on a graph induced by the FSM; we re-formulate the constraints used in this method as a set of Boolean formulas; and use a SAT solver to generate a checking sequence of minimal length

    Distinguishing experiments for timed nondeterministic finite state machine

    Get PDF
    The problem of constructing distinguishing experiments is a fundamental problem in the area of finite state machines (FSMs), especially for FSM-based testing. In this paper, the problem is studied for timed nondeterministic FSMs (TFSMs) with output delays. Given two TFSMs, we derive the TFSM intersection of these machines and show that the machines can be distinguished using an appropriate (untimed) FSM abstraction of the TFSM intersection. The FSM abstraction is derived by constructing appropriate partitions for the input and output time domains of the TFSM intersection. Using the obtained abstraction, a traditional FSM-based preset algorithm can be used for deriving a separating sequence for the given TFSMs if these machines are separable. Moreover, as sometimes two non-separable TFSMs can still be distinguished by an adaptive experiment, based on the FSM abstraction we present an algorithm for deriving an r-distinguishing TFSM that represents a corresponding adaptive experiment

    Testing from a finite state machine: Extending invertibility to sequences

    Get PDF
    When testing a system modelled as a finite state machine it is desirable to minimize the effort required. It has been demonstrated that it is possible to utilize test sequence overlap in order to reduce the test effort and this overlap has been represented by using invertible transitions. In this paper invertibility will be extended to sequences in order to reduce the test effort further and encapsulate a more general type of test sequence overlap. It will also be shown that certain properties of invertible sequences can be used in the generation of state identification sequences

    Post processing for checking sequences

    Get PDF
    There are several methods to generate a checking sequence (CS) from a given Finite State Machine M. These methods generate a CS in such a way that when the CS is traced on M, every node visited during this trace is recognized as some state of M and every transition of M is traversed. When the recognitions of the nodes in this trace are analyzed, it is observed that some of the nodes are recognized multiple times redundantly. This observation raises the following question: Is it possible to reduce the length of a given CS by eliminating redundant recognitions? In this thesis we focus on this question. We formalize the recognitions, detect multiple redundant recognitions and suggest a way to eliminate them to reduce the length of a given CS. An experimental study of our approach is also presented

    Hardness of deriving invertible sequences from finite state machines

    Get PDF
    © Springer International Publishing AG 2017.Many test generation algorithms use unique input/output sequences (UIOs) that identify states of the finite state machine specification M. However, it is known that UIO checking the existence of UIO sequences is PSPACE-complete. As a result, some UIO generation algorithms utilise what are called invertible sequences; these allow one to construct additional UIOs once a UIO has been found. We consider three optimisation problems associated with invertible sequences: deciding whether there is a (proper) invertible sequence of length at least K; deciding whether there is a set of invertible sequences for state set S′ that contains at most K input sequences; and deciding whether there is a single input sequence that defines invertible sequences that take state set S″ to state set S′. We prove that the first two problems are NP-complete and the third is PSPACE-complete. These results imply that we should investigate heuristics for these problems
    corecore