2,702 research outputs found

    The Complexity of SORE-definability Problems

    Get PDF
    Single occurrence regular expressions (SORE) are a special kind of deterministic regular expressions, which are extensively used in the schema languages DTD and XSD for XML documents. In this paper, with motivations from the simplification of XML schemas, we consider the SORE-definability problem: Given a regular expression, decide whether it has an equivalent SORE. We investigate extensively the complexity of the SORE-definability problem: We consider both (standard) regular expressions and regular expressions with counting, and distinguish between the alphabets of size at least two and unary alphabets. In all cases, we obtain tight complexity bounds. In addition, we consider another variant of this problem, the bounded SORE-definability problem, which is to decide, given a regular expression E and a number M (encoded in unary or binary), whether there is an SORE, which is equivalent to E on the set of words of length at most M. We show that in several cases, there is an exponential decrease in the complexity when switching from the SORE-definability problem to its bounded variant

    Translation from Classical Two-Way Automata to Pebble Two-Way Automata

    Get PDF
    We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional "pebble" movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic two-way machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines

    Security Analysis of Role-based Access Control through Program Verification

    No full text
    We propose a novel scheme for proving administrative role-based access control (ARBAC) policies correct with respect to security properties using the powerful abstraction based tools available for program verification. Our scheme uses a combination of abstraction and reduction to program verification to perform security analysis. We convert ARBAC policies to imperative programs that simulate the policy abstractly, and then utilize further abstract-interpretation techniques from program analysis to analyze the programs in order to prove the policies secure. We argue that the aggressive set-abstractions and numerical-abstractions we use are natural and appropriate in the access control setting. We implement our scheme using a tool called VAC that translates ARBAC policies to imperative programs followed by an interval-based static analysis of the program, and show that we can effectively prove access control policies correct. The salient feature of our approach are the abstraction schemes we develop and the reduction of role-based access control security (which has nothing to do with programs) to program verification problems
    corecore