11,101 research outputs found

    XSRL: An XML web-services request language

    Get PDF
    One of the most serious challenges that web-service enabled e-marketplaces face is the lack of formal support for expressing service requests against UDDI-resident web-services in order to solve a complex business problem. In this paper we present a web-service request language (XSRL) developed on the basis of AI planning and the XML database query language XQuery. This framework is designed to handle and execute XSRL requests and is capable of performing planning actions under uncertainty on the basis of refinement and revision as new service-related information is accumulated (via interaction with the user or UDDI) and as execution circumstances necessitate change

    Modelling, validating, and ranking of secure service compositions

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordIn the world of large-scale applications, software as a service (SaaS) in general and use of microservices, in particular, is bringing service-oriented architectures to a new level: Systems in general and systems that interact with human users (eg, sociotechnical systems) in particular are built by composing microservices that are developed independently and operated by different parties. At the same time, SaaS applications are used more and more widely by enterprises as well as public services for providing critical services, including those processing security or privacy of relevant data. Therefore, providing secure and reliable service compositions is increasingly needed to ensure the success of SaaS solutions. Building such service compositions securely is still an unsolved problem. In this paper, we present a framework for modelling, validating, and ranking secure service compositions that integrate both automated services as well as services that interact with humans. As a unique feature, our approach for ranking services integrates validated properties (eg, based on the result of formally analysing the source code of a service implementation) as well as contractual properties that are part of the service level agreement and, thus, not necessarily ensured on a technical level

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
    corecore