8,699 research outputs found

    Communication Efficient Checking of Big Data Operations

    Get PDF
    We propose fast probabilistic algorithms with low (i.e., sublinear in the input size) communication volume to check the correctness of operations in Big Data processing frameworks and distributed databases. Our checkers cover many of the commonly used operations, including sum, average, median, and minimum aggregation, as well as sorting, union, merge, and zip. An experimental evaluation of our implementation in Thrill (Bingmann et al., 2016) confirms the low overhead and high failure detection rate predicted by theoretical analysis

    Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker

    Full text link
    Since the proof of the four color theorem in 1976, computer-generated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validity of such proofs. In this paper, we describe a formalized theory of size-optimal sorting networks. From this formalization we extract a certified checker that successfully verifies computer-generated proofs of optimality on up to 8 inputs. The checker relies on an untrusted oracle to shortcut the search for witnesses on more than 1.6 million NP-complete subproblems.Comment: IMADA-preprint-c

    Optimizing a Certified Proof Checker for a Large-Scale Computer-Generated Proof

    Full text link
    In recent work, we formalized the theory of optimal-size sorting networks with the goal of extracting a verified checker for the large-scale computer-generated proof that 25 comparisons are optimal when sorting 9 inputs, which required more than a decade of CPU time and produced 27 GB of proof witnesses. The checker uses an untrusted oracle based on these witnesses and is able to verify the smaller case of 8 inputs within a couple of days, but it did not scale to the full proof for 9 inputs. In this paper, we describe several non-trivial optimizations of the algorithm in the checker, obtained by appropriately changing the formalization and capitalizing on the symbiosis with an adequate implementation of the oracle. We provide experimental evidence of orders of magnitude improvements to both runtime and memory footprint for 8 inputs, and actually manage to check the full proof for 9 inputs.Comment: IMADA-preprint-c

    A geometric Littlewood-Richardson rule

    Full text link
    We describe an explicit geometric Littlewood-Richardson rule, interpreted as deforming the intersection of two Schubert varieties so that they break into Schubert varieties. There are no restrictions on the base field, and all multiplicities arising are 1; this is important for applications. This rule should be seen as a generalization of Pieri's rule to arbitrary Schubert classes, by way of explicit homotopies. It has a straightforward bijection to other Littlewood-Richardson rules, such as tableaux, and Knutson and Tao's puzzles. This gives the first geometric proof and interpretation of the Littlewood-Richardson rule. It has a host of geometric consequences, described in the companion paper "Schubert induction". The rule also has an interpretation in K-theory, suggested by Buch, which gives an extension of puzzles to K-theory. The rule suggests a natural approach to the open question of finding a Littlewood-Richardson rule for the flag variety, leading to a conjecture, shown to be true up to dimension 5. Finally, the rule suggests approaches to similar open problems, such as Littlewood-Richardson rules for the symplectic Grassmannian and two-flag varieties.Comment: 46 pages, 43 figure

    Total Haskell is Reasonable Coq

    Full text link
    We would like to use the Coq proof assistant to mechanically verify properties of Haskell programs. To that end, we present a tool, named hs-to-coq, that translates total Haskell programs into Coq programs via a shallow embedding. We apply our tool in three case studies -- a lawful Monad instance, "Hutton's razor", and an existing data structure library -- and prove their correctness. These examples show that this approach is viable: both that hs-to-coq applies to existing Haskell code, and that the output it produces is amenable to verification.Comment: 13 pages plus references. Published at CPP'18, In Proceedings of 7th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP'18). ACM, New York, NY, USA, 201

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools

    RTL2RTL Formal Equivalence: Boosting the Design Confidence

    Full text link
    Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) constraints force a faster design and validation closure. This in turn enforces novel ways of identifying and debugging behavioral inconsistencies early in the design cycle. Addition of incremental features and timing fixes may alter the legacy design behavior and would inadvertently result in undesirable bugs. The most common method of verifying the correctness of the changed design is to run a dynamic regression test suite before and after the intended changes and compare the results, a method which is not exhaustive. Modern Formal Verification (FV) techniques involving new methods of proving Sequential Hardware Equivalence enabled a new set of solutions for the given problem, with complete coverage guarantee. Formal Equivalence can be applied for proving functional integrity after design changes resulting from a wide variety of reasons, ranging from simple pipeline optimizations to complex logic redistributions. We present here our experience of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking the design sanity in a very short time, thus enabling faster and safer design churn. The techniques presented in this paper are applicable to any complex hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195
    corecore