7,154 research outputs found

    Numerical Approximations Using Chebyshev Polynomial Expansions

    Full text link
    We present numerical solutions for differential equations by expanding the unknown function in terms of Chebyshev polynomials and solving a system of linear equations directly for the values of the function at the extrema (or zeros) of the Chebyshev polynomial of order N (El-gendi's method). The solutions are exact at these points, apart from round-off computer errors and the convergence of other numerical methods used in connection to solving the linear system of equations. Applications to initial value problems in time-dependent quantum field theory, and second order boundary value problems in fluid dynamics are presented.Comment: minor wording changes, some typos have been eliminate

    Spectral Methods for Numerical Relativity. The Initial Data Problem

    Get PDF
    Numerical relativity has traditionally been pursued via finite differencing. Here we explore pseudospectral collocation (PSC) as an alternative to finite differencing, focusing particularly on the solution of the Hamiltonian constraint (an elliptic partial differential equation) for a black hole spacetime with angular momentum and for a black hole spacetime superposed with gravitational radiation. In PSC, an approximate solution, generally expressed as a sum over a set of orthogonal basis functions (e.g., Chebyshev polynomials), is substituted into the exact system of equations and the residual minimized. For systems with analytic solutions the approximate solutions converge upon the exact solution exponentially as the number of basis functions is increased. Consequently, PSC has a high computational efficiency: for solutions of even modest accuracy we find that PSC is substantially more efficient, as measured by either execution time or memory required, than finite differencing; furthermore, these savings increase rapidly with increasing accuracy. The solution provided by PSC is an analytic function given everywhere; consequently, no interpolation operators need to be defined to determine the function values at intermediate points and no special arrangements need to be made to evaluate the solution or its derivatives on the boundaries. Since the practice of numerical relativity by finite differencing has been, and continues to be, hampered by both high computational resource demands and the difficulty of formulating acceptable finite difference alternatives to the analytic boundary conditions, PSC should be further pursued as an alternative way of formulating the computational problem of finding numerical solutions to the field equations of general relativity.Comment: 15 pages, 5 figures, revtex, submitted to PR

    A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions

    Full text link
    In this paper, the fractional order of rational Bessel functions collocation method (FRBC) to solve Thomas-Fermi equation which is defined in the semi-infinite domain and has singularity at x=0x = 0 and its boundary condition occurs at infinity, have been introduced. We solve the problem on semi-infinite domain without any domain truncation or transformation of the domain of the problem to a finite domain. This approach at first, obtains a sequence of linear differential equations by using the quasilinearization method (QLM), then at each iteration solves it by FRBC method. To illustrate the reliability of this work, we compare the numerical results of the present method with some well-known results in other to show that the new method is accurate, efficient and applicable

    Spectral methods for partial differential equations

    Get PDF
    Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized

    A multidomain spectral method for solving elliptic equations

    Get PDF
    We present a new solver for coupled nonlinear elliptic partial differential equations (PDEs). The solver is based on pseudo-spectral collocation with domain decomposition and can handle one- to three-dimensional problems. It has three distinct features. First, the combined problem of solving the PDE, satisfying the boundary conditions, and matching between different subdomains is cast into one set of equations readily accessible to standard linear and nonlinear solvers. Second, touching as well as overlapping subdomains are supported; both rectangular blocks with Chebyshev basis functions as well as spherical shells with an expansion in spherical harmonics are implemented. Third, the code is very flexible: The domain decomposition as well as the distribution of collocation points in each domain can be chosen at run time, and the solver is easily adaptable to new PDEs. The code has been used to solve the equations of the initial value problem of general relativity and should be useful in many other problems. We compare the new method to finite difference codes and find it superior in both runtime and accuracy, at least for the smooth problems considered here.Comment: 31 pages, 8 figure

    Spectral methods for CFD

    Get PDF
    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched
    corecore