174 research outputs found

    Enhanced Continuous Higher Order Sliding Mode Control with Adaptation

    Get PDF
    This is the author accepted manuscript. The final version is availabel from Elsevier via the DOI in this recordThis paper proposes a new Continuous Adaptive HOSM control algorithm. The key advantage of the adaption scheme is that it does not require knowledge of the bounds on the matched uncertainty, and the gains themselves are not conservatively overestimated by the adaption scheme – which helps mitigate the problem of chattering. Compared with earlier work, two variable parameters are allowed to adapt and this facilitates much better self-tuning capabilities and improved closed-loop performance

    A Model-Free Control System Based on the Sliding Mode Control with Automatic Tuning Using as On-Line Parameter Estimation Approach

    Get PDF
    The sliding mode control algorithm and Lyapunov-based methods, have received much attention recently due to their ability to directly handle nonlinear systems while guaranteeing closed-loop tracking stability. In this work, a unique model-free sliding mode control technique has developed solely based on previous control inputs. The new method requires only knowledge of the system order and state measurements and does not require a theoretical model of the dynamic system. Lyapunov’s stability theorem is used in the controller formulation process to ensure closed-loop asymptotic stability. High frequency chattering of the control effort is reduced by using a smoothing boundary layer into the control law. Parameters variation during control operating and noise effect cannot be handled by the model-free controller if the controller tuning parameters are chosen arbitrarily since tracking performance becomes unacceptable. In addition, in previous work, the bounds of the input influence gain parameters were assumed to be known to derive the model-free controller. Therefore, in this work, a new approach is proposed for estimating the increment to the switching gain in real-time to ensure the sliding condition (which guarantees closed-loop tracking stability) is satisfied using a control law form that assumes a strictly unitary input influence gain. In formulation of estimation law, an exponential forgetting factor is combined with the least-squares estimator to ensure the updated data are used and past data are excluded. An automatic bounded forgetting tuning technique is developed to maintain the benefits of data forgetting while avoiding the possibility of gain unboundedness in absence of persistent excitation. The tuning estimator is assured that the resulting gain matrix is upper bounded regardless of the persistent excitation by suspending the data forgetting if the gain matrix reaches the specified upper bound. Simulations are performed on a series of linear and nonlinear SISO and MIMO systems with and without including actuator time-delay effects. Finally, a model is developed to simulate a quadcopter as a real-world application case. In all cases, the controller achieved perfect or near-perfect tracking performance using updated controller and on-line estimator tuning process

    Finite-time sliding mode control strategies and their applications

    Get PDF
    In many engineering applications, faster convergence is always sought, such as manufacturing plants, defence sectors, mechatronic systems. Nowadays, most of the physical systems are operated in a closed-loop environment in conjunction with a controller. Therefore, the controller plays a critical role in determining the speed of the convergence of the entire closed-loop system. Linear controllers are quite popular for their simple design. However, linear controllers provide asymptotic convergence speed, i.e., the actual convergence is obtained when the time reaches an infinitely large amount. Furthermore, linear controllers are not entirely robust in the presence of non-vanishing types of disturbances. It is always important to design robust controllers because of the presence of model imperfections and unknown disturbances in almost all kinds of systems. Therefore, it is necessary to design controllers that are not only robust, but will also provide faster convergence speed. Out of many robust non-linear control strategies, a further development in sliding mode control (SMC) strategy is considered in this thesis because of its simplicity and robustness. There have been many contributions in the SMC field in the last decade. Many existingmethods are available for the SMC design for second-order systems. However, the SMC design becomes extremely complex if the system order increases. Therefore, the first part of this thesis focuses on developing arbitrary-order SMC strategies with a relatively simpler design while providing finite-time convergence. Novel methods are developed with both continuous and discontinuous control structures. The second part of this thesis focuses on developing algorithms to provide even faster convergence speed than that of finite-time convergent algorithms. Some practical applications need strict constraints on time response due to security reasons or to ameliorate the productiveness. For example, a missile or any aerial launch vehicle can be hugely affected by a strong wind gust deviating it from the desired trajectory, thus yielding a significant degree of initial tracking error. It is worth mentioning that the state convergence achieved in SMC during sliding can be either asymptotic or in finite-time, depending on the selection of the surface. Furthermore, it primarily depends on the initial conditions of the states. This provides a motivation to focus on developing SMC controllers where the convergence time does not depend on initial conditions, and a well-defined theoretical analysis is provided in the thesis regarding arbitrary-order fixed-time convergent SMC design. Subsequently, a predefined-time convergent second-order differentiator and observer are proposed. The main advantage of the proposed differentiator is to calculate the derivative of a given signal in fixed-time while the least upper bound of the fixed stabilisation time is equal to a tunable parameter. Similarly, the proposed predefined-time observer is robust with respect to bounded uncertainties and can also be used to estimate the uncertainties. The final part of the thesis is focused on the applications of the proposed algorithms. First of all, a novel third-order SMC is designed for a piezoelectric-driven motion systems achieving better accuracy and control performance. Later on, an experimental validation of the proposed controller is conducted on an induction motor setup. Later, a fixed-time convergent algorithm is proposed for an automatic generation control (AGC) of a multi-area interconnected power system while considering the non-linearities in the dynamic system. The final part is focused on developing fixed-time convergent algorithms in a co-operative environment. The reason for selecting such a system is the presence of the highest degree of uncertainties. To this end, a novel distributed algorithm is developed for achieving second-order consensus in the multiagent systems by designing a full-order fixed-time convergent sliding surface

    Nonlinear Dynamics Analysis and Control of Space Vehicles with Flexible Structures

    Get PDF
    Space vehicles that implement hardware such as antennas, solar panels, and other extended appendages necessary for their respective missions must consider the nonlinear rotational and vibrational dynamics of these flexible structures. Formulation and analysis of these flexible structures must account for the rigid-flexible coupling present in the system dynamics for stability analysis and control design. The system model is represented by a flexible appendage attached to a central rigid body, where the flexible appendage is modeled as a cantilevered Euler-Bernoulli beam. Discretization techniques, such as the assumed modes method and the finite element method, are used to model the coupled dynamics by transforming the partial differential equations of motion into a finite set of differential equations. State feedback control laws are designed to achieve stability and desired motion in the presence of rigid-flexible coupling. An optimal control law in the form of a linear quadratic regulator is presented and compared with a Lyapunov-based control law that guarantees asymptotic stability. Conventional and adaptive sliding mode control laws are also presented to account for any uncertainties in the linearized system model. Full-order and reduced-order observers are included in the control system to account for lack of velocity state measurements that are generally unavailable in real world applications

    Dynamic Smooth Sliding Control Applied to UAV Trajectory Tracking

    Full text link
    This paper proposes a sliding mode controller with smooth control effort for a class of nonlinear plants. The proposed controller is created by allowing some constant parameters of the earlier smooth sliding control (SSC) to vary as a function of the output tracking error, improving the control chattering alleviation in practical implementations. Furthermore, during the sliding mode, the new scheme can synthesize a range of controllers, such as fixed gain PI controllers and approximations of the standard Super-Twisting Algorithm (STA), as well as, the variable gain Super-Twisting Algorithm (VGSTA). A complete closed-loop stability analysis is provided. In addition, realistic simulation results with an unmanned aerial vehicle (UAV) model, incorporating aerodynamic effects and internal closed-loop controllers, are obtained and validated via experiments with a commercial hexacopter
    • …
    corecore