525 research outputs found

    Supercapacitor Having Electrode Material Comprising Single-wall Carbon Nanotubes And Process For Making The Same

    Get PDF
    The present invention relates to a supercapacitor, also known as an electrical double-layer capacitor or ultracapacitor, having electrode material comprising single-wall carbon nanotubes. The carbon nanotubes can be derivatized with functional groups. The electrode material is made by preparing a polymer-nanotube suspension comprising polymer and nanotubes, forming the polymer-nanotube suspension into a polymer-nanotube composite of the desired form, carbonizing the polymer-nanotube composite to form a carbonaceous polymer-nanotube material, and activating the material. The supercapacitor includes electrode material comprising activated carbonaceous polymer-nanotube material in contact with current collectors and permeated with an electrolyte, which may be either fluid or solid. In the case of a fluid or compressible electrolyte, an electrolyte-permeable separator or spacer is interposed between the electrodes to keep the electrodes from shorting. The supercapacitor made with electrodes comprising underivatized single-wall carbon nanotubes and polymer that has been carbonized and activated appears to operate as a non-Faradaic supercapacitor.Georgia Tech Research Corporatio

    Effect of Inductance and Requirements for Surge Current Testing of Tantalum Capacitors

    Get PDF
    Surge current testing is considered one of the most important techniques to evaluate reliability and/or screen out potentially defective tantalum capacitors for low-impedance applications. Analysis of this test, as it is described in the MIL-PRF-55365 document, shows that it does not address several issues that are important to assure adequate and reproducible testing. This work investigates the effect of inductance of the test circuit on voltage and current transients and analyzes requirements for the elements of the circuit, in particular, resistance of the circuit, inductance of wires and resistors, type of switching devices, and characteristics of energy storage bank capacitors. Simple equations to estimate maximum inductance of the circuit to prevent voltage overshooting and minimum duration of charging/discharging cycles to avoid decreasing of the effective voltage and overheating of the parts during surge current testing are suggested

    Modeling of electrical behavior of graphene-based ultracapacitors

    Get PDF
    Graphene has been identified as a promising material for energy storage, especially for high performance ultracapacitors. Graphene-based ultracapacitors show high stability, significantly-improved capacitance and energy density with fast charging and discharging time at a high current density, due to enhanced ionic electrolyte accessibility in deeper regions. The surface area of a single graphene sheet is 2630 m2/g, substantially higher than values derived from Brunauer Emmett Teller (BET) surface area measurements of activated carbons used in the current electrochemical double layer capacitors. In an ultracapacitor cell, chemically modified graphene (CMG) materials demonstrate high specific capacitances of 135 and 99 F/g in aqueous and organic electrolytes, respectively. In addition, high electrical conductivity gives these materials consistently good performance over a wide range of voltage scan rates. This paper reports a modeling methodology to predict the electrical behavior of a 2.7 V/650 F ultracapacitor cell. The ultracapacitor cell is subject to the charge/discharge cycling with constant-current between 1.35 V and 2.7 V. The charge/discharge current values examined are 50, 100, 150, and 200 A. A three resistor-capacitor (RC) parallel branch model is employed to calculate the electrical behavior of the ultracapacitor. The simulation results for the variations of the cell voltage as a function of time for various charge/discharge currents are in good agreement with the experimental measurements

    Space Electrochemical Research and Technology

    Get PDF
    This document contains the proceedings of NASA's fourth Space Electrochemical Research and Technology (SERT) Conference, held at the NASA Lewis Research Center on April 14-15, 1993. The objective of the conference was to assess the present status and general thrust of research and development in those areas of electrochemical technology required to enable NASA missions into the next century. The conference provided a forum for the exchange of ideas and opinions of those actively involved in the field, in order to define new opportunities for the application of electrochemical processes in future NASA missions. Papers were presented in three technical areas: advanced secondary batteries, fuel cells, and advanced concepts for space power. This document contains the papers presented

    Novel Multiphysics Phenomena in a New Generation of Energy Storage and Conversion Devices

    Get PDF
    The swelling demand for storing and using energy at diverse scales has stimulated the exploration of novel materials and design strategies applicable to energy storage systems. The most popular electrochemical energy storage systems are batteries, fuel cells and capacitors. Supercapacitors, also known as ultracapacitors, or electrochemical capacitors have emerged to be particularly promising. Besides exhibiting high cycle life, they combine the best attributes of capacitors (high power density) and batteries (high energy storage density). Consequently, they are expected to be in high demand for applications requiring peak power such as hybrid electric vehicles and uninterruptible power supplies (UPS). This dissertation aims to make advancements on the following two topics in supercapacitor research with the aid of modeling and experimental tools: applying various thermophysical effects to design supercapacitor devices with novel functionalities and studying degradation mechanisms upon continuous cycling of conventional supercapacitors. The prime drawback of conventional supercapacitors is their low energy density. Most research in the last decade has focused on synthesizing novel electrode materials. Although such novel electrodes lead to high energy density, they often involve complicated synthesis process and result in high cost and low power density. A new concept of inducing pseudocapacitance developed in recent years is by introducing redox additives in the electrolyte that engage in redox reactions at the electrode/electrolyte interface during charge/discharge. The first section of this dissertation reports the performance of fabricated solid-state supercapacitors composed of redox-active gel electrolyte (PVA-K3Fe(CN)6-K4Fe(CN)6). The electrochemical performance has been studied extensively using cyclic voltammetry, constant current charge/discharge and impedance spectroscopy techniques, and then the results are compared with similar devices composed of conventional gel electrolytes such as PVA-H3PO4 and PVA-KOH on the basis of capacitance, internal resistance and stable voltage window. The second section explores the utility of the thermogalvanic property of the same redox-active gel electrolyte, PVA-K3Fe(CN)6-K4Fe(CN)6 in the construction of a thermoelectric supercapacitor. The integrated device is capable of being electrically charged by applying a temperature gradient across its two electrodes. In the absence of available temperature gradient, the device can be discharged electrically through an external circuit. Therefore, such a device can be used to harvest waste heat from intermittent heat sources. An equivalent circuit elucidating the mechanisms of energy conversion and storage applicable to thermally chargeable supercapacitors is developed. A fitting analysis aids in the evaluation of model circuit parameters providing good agreement with experimental voltage and current measurements. The latter part of the dissertation investigates the factors influencing aging in conventional supercapacitors. In the first part, a new imaging technique based on the electroreflectance property of gold has been developed and applied to characterize the aging characteristics of a microsupercapacitor device. Previous aging studies were performed through traditional electrical characterization techniques such as cyclic voltammetry, constant charge/discharge, and electrochemical impedance spectroscopy. These methods, although simple, measure an average of the structures’ internal performance, providing little or no information about microscopic details inside the device. The electroreflectance imaging method, developed in this work is demonstrated as a high-resolution imaging technique to investigate charge distribution, and thus to infer aging characteristics upon continuous cycling at high scan rates. The technique can be used for non-intrusive spatial analysis of other electrochemical systems in the future. In addition, we investigate heat generation mechanisms that are responsible for accelerated aging in supercapacitors. A modeling framework has been developed for heat generation rates and resulting temperature evolution in porous electrode supercapacitors upon continuous cycling. Past thermal models either neglected spatial variations of heat generation within the cell or considered electrodes as flat plates that led to inaccuracies. Here, expressions for spatiotemporal variation of heat generation rate are rigorously derived on the basis of porous electrode theory. Detailed numerical simulations of temperature evolution are performed for a real-world device, and the results resemble past measurements both qualitatively and quantitatively. In the last chapter of the thesis, a rare thermoelectric effect called the Nernst effect has been investigated in single-layer periodic graphene with the aid of a modified Boltzmann transport equation. Detailed formulations of the transport coefficients from the BTE solution are developed in order to relate the Nernst coefficient to the amount of impurity density, temperature, band gap and applied magnetic field. Detailed knowledge of the variation of the thermoelectric and thermomagnetic properties of graphene shown in this work will prove helpful for improving the performance of magnetothermoelectric coolers and sensors

    Space Electrochemical Research and Technology

    Get PDF
    Individual papers presented at the conference address the following topics: development of a micro-fiber nickel electrode for nickel-hydrogen cell, high performance nickel electrodes for space power application, bending properties of nickel electrodes for nickel-hydrogen batteries, effect of KOH concentration and anions on the performance of a Ni-H2 battery positive plate, advanced dependent pressure vessel nickel hydrogen spacecraft cell and battery design, electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery design, a novel unitized regenerative proton exchange membrane fuel cell, fuel cell systems for first lunar outpost - reactant storage options, the TMI regenerable solid oxide fuel cell, engineering development program of a closed aluminum-oxygen semi-cell system for an unmanned underwater vehicle, SPE OBOGS on-board oxygen generating system, hermetically sealed aluminum electrolytic capacitor, sol-gel technology and advanced electrochemical energy storage materials, development of electrochemical supercapacitors for EMA applications, and high energy density electrolytic capacitor

    Identification of the electrical parameters of the capacitors discharging circuit in the Morgan-Botti Lightning Laboratory (Cardiff)

    Get PDF
    Descrizione di un laboratorio usato per testare i materiali degli aereoplani contro i fulmini. Individuazione dei parametri elettrici insiti nel circuito di scarica del banco di condensatori present nel laboratorio. Descrizione della propagazione delle onde di corrente nei cavi in un transitorio (RLC) e sue applicazion

    Supercapacitors on Flexible Substrates for Energy Autonomous Electronics

    Get PDF
    Electrical energy storage facilitates the use of electrical devices also when there is no full-time external energy source available. Electrical energy can be stored chemically as in batteries or in electric field as in capacitors. Supercapacitors are electrochemical cells in which energy is stored in electric field in the interface between electrode surface and electrolyte. Typically supercapacitors have higher power density but lower energy density than batteries. In general, supercapacitors have longer lifetime and they can be used in a wide temperature range.The goal of the research reported in this thesis was to study and develop small, flexible, environmentally friendly supercapacitors for e.g. Internet of Things or wireless sensor network applications, with emphasis on inexpensive materials. A second focus of the research was on scalable solution based processes which are similar to mass printing making large-scale production feasible. A further goal was to avoid toxic materials in order to enable disposable or incinerable devices.The supercapacitors were fabricated on paperboard or polymer substrates. Metal foils, silver ink and graphite ink were used as current collectors, activated carbon or polypyrrole as electrode material and paper as separator. Biopolymer chitosan was used as electrode binder and also demonstrated to work as a separator. In most experiments aqueous sodium chloride acted as electrolyte. Typically the area of the electrodes was 2 cm2. A monolithic structure facilitating supercapacitor fabrication by a solution process method was developed.The capacitance values of the supercapacitors were of the order of 0.1-0.5 F. Depending on the current collector material and dimensions, the equivalent series resistance ranged from below 1 to above 30 . Self-discharge properties for various types of supercapacitors were defined: still after 30 days over 50 % of the charged energy remained. Energy efficiency values were up to 96 %. These numerical values are adequate for energy storage components in practical application and thus show that the goals set for the research were reached

    Thermal Modeling and Optimization of Lithium-Ion Batteries for Electric Vehicles

    Get PDF
    This dissertation contributes to the modeling and optimization of Lithium-ion battery’s thermal management for electrified vehicles (EVs). EVs in automotive technology is one of the principal solutions to today’s environmental concerns such as air pollution and greenhouse impacts. Light duty and heavy duty EVs can decrease the amount of the pollution efficiently. EV’s receive their power from installed rechargeable batteries in the car. These batteries are not just utilized to power the car but used for the functioning of lights, wipers and other electrical accessories. The Lithium-ion batteries (LIBs) have attracted a lot of research interest in recent years, due to their high potential as compared to the conventional aqueous based batteries, high gravimetric and volumetric energy density, and high power capability. However, Li-ion batteries suffer from high self-heating, particularly during high power applications and fast charging, which confines their lifetime and cause safety, reliability and environmental concerns. Therefore, the first part of this study consists of the experimental investigation of the charge-discharge behavior and heat generation rate of lithium ion cells at different C-rates to monitor and record the thermal behavior of the cell. A further concern regarding LIBs is strongly dependent on the quality and efficiency of battery thermal management system. Hence, this is extremely important to identify a reliable and accurate battery management system (BMS). Here in the second part, we show that thermal management and the reliability of Li-ion batteries can be drastically improved using optimization technique. Furthermore, a LIB is a compact system including high energy materials which may undergo thermal runaway and explode the battery if overcharged due to the decomposition of battery materials within the electrolyte and electrodes that generate flammable gaseous species. The application of this kind of technology needs many laboratory experiments and simulations to identify the fundamental thermal characteristics of the system before passing it to the real use. An accurate battery model proposes a method to simulate the complex situations of the system without performing time consuming actual tests, thus a reliable scheme to identify the source of heat generation and required parameters to optimize the cell performance is necessary. For this reason, the latest phase of this research covers the development and comparison of a model based on adjustable design parameters to predict and optimize battery performances. This kind of model provides a relationship with the accuracy and simplicity to estimate the cell dynamics during charge and discharge

    Lithium Ion Battery Failure Detection Using Temperature Difference Between Internal Point and Surface

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Lithium-ion batteries are widely used for portable electronics due to high energy density, mature processing technology and reduced cost. However, their applications are somewhat limited by safety concerns. The lithium-ion battery users will take risks in burn or explosion which results from some internal components failure. So, a practical method is required urgently to find out the failures in early time. In this thesis, a new method based on temperature difference between internal point and surface (TDIS) of the battery is developed to detect the thermal failure especially the thermal runaway in early time. A lumped simple thermal model of a lithium-ion battery is developed based on TDIS. Heat transfer coefficients and heat capacity are determined from simultaneous measurements of the surface temperature and the internal temperature in cyclic constant current charging/discharging test. A look-up table of heating power in lithium ion battery is developed based on the lumped model and cyclic charging/discharging experimental results in normal operating condition. A failure detector is also built based on TDIS and reference heating power curve from the look-up table to detect aberrant heating power and bad parameters in transfer function of the lumped model. The TDIS method and TDIS detector is validated to be effective in thermal runaway detection in a thermal runway experiment. In the validation of thermal runway test, the system can find the abnormal heat generation before thermal runaway happens by detecting both abnormal heating power generation and parameter change in transfer function of thermal model of lithium ion batteries. The result of validation is compatible with the expectation of detector design. A simple and applicable detector is developed for lithium ion battery catastrophic failure detection
    • …
    corecore