5,948 research outputs found

    Pay as You Go: A Generic Crypto Tolling Architecture

    Full text link
    The imminent pervasive adoption of vehicular communication, based on dedicated short-range technology (ETSI ITS G5 or IEEE WAVE), 5G, or both, will foster a richer service ecosystem for vehicular applications. The appearance of new cryptography based solutions envisaging digital identity and currency exchange are set to stem new approaches for existing and future challenges. This paper presents a novel tolling architecture that harnesses the availability of 5G C-V2X connectivity for open road tolling using smartphones, IOTA as the digital currency and Hyperledger Indy for identity validation. An experimental feasibility analysis is used to validate the proposed architecture for secure, private and convenient electronic toll payment

    Analysis of roles and position of mobile network operators in mobile payment infrastructure

    Get PDF
    A number of different mobile payment solutions have been presented the last decade. The phone subscription with its security mechanisms are used for user identification and payments. This is the case for SMS based payment and ticketing systems that are getting more and more popular. However, there are other ways to implement a Trusted Element (TE) , where a SIM card architecture is only one. It can be in the mobile phone, as a separate integrated circuit, as an optional customer deployed plug-in device (e.g., microSD) or be running as an application on a server existing entirely as software. In this paper we analyze what roles and responsibilities different actors have in different types of mobile payments solutions. The main focus is on the implications for the mobile operator business. It turns out that new types of intermediary actors in most cases play an important role. Sometimes mobile operators are not even involved. The emergence of new payment together with other non-SIM card based TE solutions opens up for many different market scenarios for mobile payment services. --

    Internet Accounting

    Get PDF
    This article provides an introduction to Internet accounting and discusses the status of related work within the IETF and IRTF, as well as certain research projects. Internet accounting is different from accounting in POTS. To understand Internet accounting, it is important to answer questions like "what is being paid for" and "who is being paid". With respect to the question "what is being paid for" a distinction can be made between transport accounting and content accounting. Transport accounting is interesting since techniques like DiffServ enable the provision of different quality of service classes; each class will be charged differently to avoid all users selecting the same top-level class. The interest in content accounting finds its roots in the fast growth of commercial offerings over the Internet; examples of such offerings include remote video and software distribution. The question "who is being paid" has two possible answers: the network provider or the owner of the content. The case in which the network provider issues the bill is called provider-based accounting. Since this case will become more and more important, this article introduces a new architecture for provider-based accounting

    Enabling IoT ecosystems through platform interoperability

    Get PDF
    Today, the Internet of Things (IoT) comprises vertically oriented platforms for things. Developers who want to use them need to negotiate access individually and adapt to the platform-specific API and information models. Having to perform these actions for each platform often outweighs the possible gains from adapting applications to multiple platforms. This fragmentation of the IoT and the missing interoperability result in high entry barriers for developers and prevent the emergence of broadly accepted IoT ecosystems. The BIG IoT (Bridging the Interoperability Gap of the IoT) project aims to ignite an IoT ecosystem as part of the European Platforms Initiative. As part of the project, researchers have devised an IoT ecosystem architecture. It employs five interoperability patterns that enable cross-platform interoperability and can help establish successful IoT ecosystems.Peer ReviewedPostprint (author's final draft

    IoT and blockchain paradigms for EV charging system

    Get PDF
    In this research work, we apply the Internet of Things (IoT) paradigm with a decentralized blockchain approach to handle the electric vehicle (EV) charging process in shared spaces, such as condominiums. A mobile app handles the user authentication mechanism to initiate the EV charging process, where a set of sensors are used for measuring energy consumption, and based on a microcontroller, establish data communication with the mobile app. A blockchain handles financial transitions, and this approach can be replicated to other EV charging scenarios, such as public charging systems in a city, where the mobile device provides an authentication mechanism. A user interface was developed to visualize transactions, gather users’ preferences, and handle power charging limitations due to the usage of a shared infrastructure. The developed approach was tested in a shared space with three EVs using a charging infrastructure for a period of 3.5 months.info:eu-repo/semantics/publishedVersio

    IoT system for EV charging at shared spaces

    Get PDF
    In current work, we apply the Internet of Things (IoT) paradigm to handle the electric vehicle (EV) charging process in small shared spaces, such as condominiums without requiring the intervention of an external supervision entity, being that role performed by the condominium management. A Mobile App handles the user interaction with the system, authenticating the request to initiate the EV charging process, a microcontroller connected to set of sensors and an actuator is used for measuring energy consumption and for enabling the charging process and, a Management Unit controls the process end to end, providing the required services to the Mobile App and the microcontroller unit while manages the energy sharing between the EV charging stations accordingly the condominium limitations and processes the energy measures to consolidate the EV charging energy transaction. A minimal user interface allows the users to visualise transactions, manage users' preferences, and configure the platform. Additionally, the conceptual model for a scaled solution is presented, supported on blockchain technologies to handle the financial transitions, allowing current approach to be replicated on broader EV charging scenarios, such as public charging systems in a city. The developed system was tested in a shared space with three EVs using a charging infrastructure for 3.5 months.No presente trabalho, é aplicado um paradigma de Internet Of Things (IOT) para agilizar e controlar o processo de carregamento de Veículos Elétricos (VE) em espaços partilhados de menores dimensões, como por exemplo condomínios residenciais, sem que seja necessária a intervenção (a título de prestação de serviços) de uma entidade externa, sendo todo o processo controlado pela gestão de condomínio. Uma aplicação móvel permite ao utilizador interagir com o sistema, permitindo a este autenticar-se no mesmo é condição necessária para que seja despoletado o processo de carregamento do VE. O sistema implementado com recurso a um microcontrolador encontrase ligado a um conjunto de sensores e um atuador permitindo medir a energia que esta ser consumida para carregamento do VE e simultaneamente, ligar e desligar o dispositivo de carregamento do veículo (através do controlo de um interruptor que entrega a energia entregue a este). O processo é controlado por uma unidade de gestão centralizada, que gera a distribuição de energia pelas estações de carregamento de VEs de acordo com as limitações do condomínio através do ligar e desligar destas e em simultâneo regista e processas as medições da energia consumida para consolidar as informações que constituem a transação de carregamento de VE e respetiva contraparte financeira associada à mesma. Adicionalmente, a unidade de gestão centralizada e a aplicação móvel, disponibilizam interfaces de utilizador mínimas para permitir funções como a consulta de transações, gestão e configuração da plataforma. Complementarmente, é apresentado um modelo conceptual permitindo escalar a solução proposta para espaços partilhados de maior dimensão, com recurso à utilização de tecnologias blockchain para gestão e registo das transações financeiras associadas à operação. Propondo uma abordagem, que poderá ser replicável em cenários mais amplos de utilização como por exemplo, a infraestrutura publica de carregamento de VE de uma cidade. O protótipo desenvolvido foi testado num espaço partilhado com três VE, usando uma infraestrutura de carregamento durante 3,5 meses
    • …
    corecore