1,097 research outputs found

    Optimization of Aggregators Energy Resources considering Local Markets and Electric Vehicle Penetration

    Get PDF
    O sector elétrico tem vindo a evoluir ao longo do tempo. Esta situação deve-se ao facto de surgirem novas metodologias para lidarem com a elevada penetração dos recursos energéticos distribuídos (RED), principalmente veículos elétricos (VEs). Neste caso, a gestão dos recursos energéticos tornou-se mais proeminente devido aos avanços tecnológicos que estão a ocorrer, principalmente no contexto das redes inteligentes. Este facto torna-se importante, devido à incerteza decorrente deste tipo de recursos. Para resolver problemas que envolvem variabilidade, os métodos baseados na inteligência computacional estão a se tornar os mais adequados devido à sua fácil implementação e baixo esforço computacional, mais precisamente para o caso tratado na tese, algoritmos de computação evolucionária (CE). Este tipo de algoritmo tenta imitar o comportamento observado na natureza. Ao contrário dos métodos determinísticos, a CEé tolerante à incerteza; ou seja, é adequado para resolver problemas relacionados com os sistemas energéticos. Estes sistemas são geralmente de grandes dimensões, com um número crescente de variáveis e restrições. Aqui a IC permite obter uma solução quase ótima em tempo computacional aceitável com baixos requisitos de memória. O principal objetivo deste trabalho foi propor um modelo para a programação dos recursos energéticos dos recursos dedicados para o contexto intradiário, para a hora seguinte, partindo inicialmente da programação feita para o dia seguinte, ou seja, 24 horas para o dia seguinte. Esta programação é feita por cada agregador (no total cinco) através de meta-heurísticas, com o objetivo de minimizar os custos ou maximizar os lucros. Estes agregadores estão inseridos numa cidade inteligente com uma rede de distribuição de 13 barramentos com elevada penetração de RED, principalmente energia renovável e VEs (2000 VEs são considerados nas simulações). Para modelar a incerteza associada ao RED e aos preços de mercado, vários cenários são gerados através da simulação de Monte Carlo usando as funções de distribuição de probabilidade de erros de previsão, neste caso a função de distribuição normal para o dia seguinte. No que toca à incerteza no modelo para a hora seguinte, múltiplos cenários são gerados a partir do cenário com maior probabilidade do dia seguinte. Neste trabalho, os mercados locais de eletricidade são também utilizados como estratégia para satisfazer a equação do balanço energético onde os agregadores vão para vender o excesso de energia ou comprar para satisfazer o consumo. Múltiplas metaheurísticas de última geração são usadas para fazer este escalonamento, nomeadamente Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with Normal-Cauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Os resultados mostram que o modelo proposto é eficaz para os múltiplos agregadores com variações de custo na sua maioria abaixo dos 5% em relação ao dia seguinte, exceto para o agregador e de VEs. É também aplicado um teste Wilcoxon para comparar o desempenho do algoritmo CUMDANCauchy++ com as restantes meta-heurísticas. O CUMDANCauchy++ mostra resultados competitivos tendo melhor performance que todos os algoritmos para todos os agregadores exceto o DEEDA que apresenta resultados semelhantes. Uma estratégia de aversão ao risco é implementada para um agregador no contexto do dia seguinte para se obter uma solução mais segura e robusta. Os resultados mostram um aumento de quase 4% no investimento, mas uma redução de até 14% para o custo dos piores cenários.The electrical sector has been evolving. This situation is because new methodologies emerge to deal with the high penetration of distributed energy resources (DER), mainly electric vehicles (EVs). In this case, energy resource management has become increasingly prominent due to the technological advances that are taking place, mainly in the context of smart grids. This factor becomes essential due to the uncertainty of this type of resource. To solve problems involving variability, methods based on computational intelligence (CI) are becoming the most suitable because of their easy implementation and low computational effort, more precisely for the case treated in this thesis, evolutionary computation (EC) algorithms. This type of algorithm tries to mimic behavior observed in nature. Unlike deterministic methods, the EC is tolerant of uncertainty, and thus it is suitable for solving problems related to energy systems. These systems are usually of high dimensions, with an increased number of variables and restrictions. Here the CI allows obtaining a near-optimal solution in good computational time with low memory requirements. This work's main objective is to propose a model for the energy resource scheduling of the dedicated resources for the intraday context, for the our-ahead, starting initially from the scheduling done for the day ahead, that is, 24 hours for the next day. This scheduling is done by each aggregator (in total five) through metaheuristics to minimize the costs or maximize the profits. These aggregators are inserted in a smart city with a distribution network of 13 buses with a high penetration of DER, mainly renewable energy and EVs (2000 EVs are considered in the simulations). Several scenarios are generated through Monte Carlo Simulation using the forecast errors' probability distribution functions, the normal distribution function for the day-ahead to model the uncertainty associated with DER and market prices. Multiple scenarios are developed through the highest probability scenario from the day-ahead when it comes to intraday uncertainty. In this work, local electricity markets are used as a mechanism to satisfy the energy balance equation where each aggregator can sell the excess of energy or buy more to meet the demand. Several recent and modern metaheuristics are used to solve the proposed problems in the thesis, namely Differential Evolution (DE), Hybrid-Adaptive DE with Decay function (HyDE-DF), DE with Estimation of Distribution Algorithm (DEEDA), Cellular Univariate Marginal Distribution Algorithm with NormalCauchy Distribution (CUMDANCauchy++), Hill Climbing to Ring Cellular Encode-Decode UMDA (HC2RCEDUMDA). Results show that the proposed model is effective for the multiple aggregators. The metaheuristics present satisfactory results and mostly less than 5% variation in costs from the day-ahead except for the EV aggregator. A Wilcoxon test is also applied to compare the performance of the CUMDANCauchy++ algorithm with the remaining metaheuristics. CUMDANCauchy++ shows competitive results beating all algorithms in all aggregators except for DEEDA, which presents similar results. A risk aversion strategy is implemented for an aggregator in the day-ahead context to get a safer and more robust solution. Results show an increase of nearly 4% in day-ahead cost but a reduction of up to 14% of worst scenario cost

    Dynamic electricity pricing for electric vehicles using stochastic programming

    Get PDF
    Electric Vehicles (EVs) are an important source of uncertainty, due to their variable demand, departure time and location. In smart grids, the electricity demand can be controlled via Demand Response (DR) programs. Smart charging and vehicle-to-grid seem highly promising methods for EVs control. However, high capital costs remain a barrier to implementation. Meanwhile, incentive and price-based schemes that do not require high level of control can be implemented to influence the EVs’ demand. Having effective tools to deal with the increasing level of uncertainty is increasingly important for players, such as energy aggregators. This paper formulates a stochastic model for day-ahead energy resource scheduling, integrated with the dynamic electricity pricing for EVs, to address the challenges brought by the demand and renewable sources uncertainty. The two-stage stochastic programming approach is used to obtain the optimal electricity pricing for EVs. A realistic case study projected for 2030 is presented based on Zaragoza network. The results demonstrate that it is more effective than the deterministic model and that the optimal pricing is preferable. This study indicates that adequate DR schemes like the proposed one are promising to increase the customers’ satisfaction in addition to improve the profitability of the energy aggregation business.info:eu-repo/semantics/acceptedVersio

    The Innovation Interface: Business model innovation for electric vehicle futures

    Get PDF
    There is huge potential to link electric vehicles, local energy systems, and personal mobility in the city. By doing so we can improve air quality, tackle climate change, and grow new business models. Business model innovation is needed because new technologies and engineering innovations are currently far ahead of the energy system’s ability to accommodate them. This report explores new business models that can work across the auto industry, transport infrastructure and energy systems

    Optimization-Based Market-Clearing Procedure with EVs Aggregator Participation

    Get PDF
    For the upcoming new generation of electric power systems, i.e. smart grids, one of the most important challenges is to achieve an adequate economic and technical management involving the different agents in the process. In order to deliver the available power from suppliers to consumers, a market-clearing mechanism is needed. At the same time, technical operation calls for controlling that technical limits are not reached to preserve the security of the system. In this environment, Electric Vehicles (EVs) are gaining importance both in economic and technical issues. In this paper, an optimization-based approach is proposed for clearing the market in a smart grid. The traditional participants in energy markets are included in the formulation, stressing the role of EVs aggregators. The results presented in this paper illustrate the influence of EVs in the market-clearing procedure. The benefits for the system and EVs aggregators are also studiedUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations

    Get PDF
    Smart microgrids belong to a set of networks that operate independently. These networks have technologies such as electric vehicle battery swapping stations that aim to economic welfare with own resources of smart microgrids. These resources should support other services, for example, the supply of energy at peak hours. This study addresses the formulation of a decision matrix based on operating conditions of electric vehicles and examines economically viable alternatives for a battery swapping station. The decision matrix is implemented to manage the swapping, charging, and discharging of electric vehicles. Furthermore, this study integrates a smart microgrid model to assess the operational strategies of the aggregator, which can act like a prosumer by managing both electric vehicle battery swapping stations and energy storage systems. The smart microgrid model proposed includes elements used for demand response and generators with renewable energies. This model investigates the effect of the wholesale, local and electric-vehicle markets. Additionally, the model includes uncertainty issues related to the planning for the infrastructure of the electric vehicle battery swapping station, variability of electricity prices, weather conditions, and load forecasting. This article also analyzes how both the user and the providers maximize their economic benefits with the hybrid optimization algorithm called variable neighborhood search - differential evolutionary particle swarm optimization. The strategy to organize the infrastructure of these charging stations reaches a reduction of 72% in the overall cost. This reduction percentage is obtained calculating the random solution with respect to the suboptimal solution
    corecore