49,112 research outputs found

    Spring-Charged Particles Model to Improved Shape Recovery:An Application for X-Ray Spinal Segmentation

    Get PDF
    Deformable models are widely used in medical image segmentation methods, to find not only single but also multiple objects within an image. They have the ability to follow the contours of an object of interest, define the boundary of ROI (Region Of Interest) and improve shape recovery. However, these methods still have limitations in cases of low image quality or clutter. This paper presents a new deformable model, the Spring-Charged Particles Model (SCPM). It simulates the movement of positively charged particles connected by springs, attracted towards the contour of objects of interest which is charged negatively, according to the gradient-magnitude image. Springs prevent the particles from moving away and keep the particles at appropriate distances without reducing their flexibility. SCPM was tested on simple shape images and on frontal X-ray images of scoliosis patients. Artificial noise was added to the simple images to examine the robustness of the method. Several configurations of springs and positively charged-particles were evaluated by determining the best spinal segmentation result. The performance of SCPM was compared to the Charged Fluid Model (CFM), Active Contours, and a convolutional neural network (CNN) with U-Net architecture to measure its ability for determining the curvature of the spinal column from frontal X-Ray images. The results show that SCPM is better at segmenting the spine and determining its curvature, as indicated by the highest Area Score value of 0.837, and the lowest standard deviation value of 0.028

    The Higgs Seesaw Induced Neutrino Masses and Dark Matter

    Get PDF
    In this paper we propose a possible explanation of the active neutrino Majorana masses with the TeV scale new physics which also provide a dark matter candidate. We extend the Standard Model (SM) with a local U(1)' symmetry and introduce a seesaw relation for the vacuum expectation values (VEVs) of the exotic scalar singlets, which break the U(1)' spontaneously. The larger VEV is responsible for generating the Dirac mass term of the heavy neutrinos, while the smaller for the Majorana mass term. As a result active neutrino masses are generated via the modified inverse seesaw mechanism. The lightest of the new fermion singlets, which are introduced to cancel the U(1)' anomalies, can be a stable particle with ultra flavor symmetry and thus a plausible dark matter candidate. We explore the parameter space with constraints from the dark matter relic abundance and dark matter direct detection.Comment: 14 pages, 4 figure

    Constraints on composite Dirac neutrinos from observations of galaxy clusters

    Full text link
    Recently, to explain the origin of neutrino masses a model based on confining some hidden fermionic bound states into right-handed chiral neutrinos has been proposed. One of the consequences of condensing the hidden sector fields in this model is the presence of sterile composite Dirac neutrinos of keV mass, which can form viable warm dark matter particles. We have analyzed constraints on this model from the observations of satellite based telescopes to detect the sterile neutrinos in clusters of galaxies.Comment: 17 pages, 2 figures, minor modifications, a reference is added, this manuscript is published in Physics Letters

    Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges

    Full text link
    We provide a systematic study of non-Hermitian topologically charged systems. Starting from a Hermitian Hamiltonian supporting Weyl points with arbitrary topological charge, adding a non-Hermitian perturbation transforms the Weyl points to one-dimensional exceptional contours. We analytical prove that the topological charge is preserved on the exceptional contours. In contrast to Hermitian systems, the addition of gain and loss allows for a new class of topological phase transition: when two oppositely charged exceptional contours touch, the topological charge can dissipate without opening a gap. These effects can be demonstrated in realistic photonics and acoustics systems.Comment: 11 pages, 9 figure

    On Using Physical Analogies for Feature and Shape Extraction in Computer Vision

    No full text
    There is a rich literature of approaches to image feature extraction in computer vision. Many sophisticated approaches exist for low- and high-level feature extraction but can be complex to implement with parameter choice guided by experimentation, but impeded by speed of computation. We have developed new ways to extract features based on notional use of physical paradigms, with parameterisation that is more familiar to a scientifically-trained user, aiming to make best use of computational resource. We describe how analogies based on gravitational force can be used for low-level analysis, whilst analogies of water flow and heat can be deployed to achieve high-level smooth shape detection. These new approaches to arbitrary shape extraction are compared with standard state-of-art approaches by curve evolution. There is no comparator operator to our use of gravitational force. We also aim to show that the implementation is consistent with the original motivations for these techniques and so contend that the exploration of physical paradigms offers a promising new avenue for new approaches to feature extraction in computer vision

    Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC

    Get PDF
    We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.Comment: 34 pages, 16 figures, PRD versio

    Inclusive Displaced Vertex Searches for Heavy Neutral Leptons at the LHC

    Full text link
    The inclusion of heavy neutral leptons to the Standard Model particle content could provide solutions to many open questions in particle physics and cosmology. The modification of the charged and neutral currents from active-sterile mixing of neutral leptons can provide novel signatures in Standard Model processes. We revisit the displaced vertex signature that could occur in collisions at the LHC via the decay of heavy neutral leptons with masses of a few GeV emphasizing the implications of flavor, kinematics, inclusive production and number of these extra neutral fermions. We study in particular the implication on the parameter space sensitivity when all mixings to active flavors are taken into account. We also discuss alternative cases where the new particles are produced in a boosted regime.Comment: 24 pages, 10 figures. Extended analysis. Published versio
    • …
    corecore