23,129 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Photon assisted tunneling in pairs of silicon donors

    Get PDF
    Shallow donors in silicon are favorable candidates for the implementation of solid-state quantum computer architectures because of the promising combination of atomiclike coherence properties and scalability from the semiconductor manufacturing industry. Quantum processing schemes require (among other things) controlled information transfer for readout. Here we demonstrate controlled electron tunneling at 10 K from P to Sb impurities and vice versa with the assistance of resonant terahertz photons

    Atomistic modeling of amorphous silicon carbide: An approximate first-principles study in constrained solution space

    Get PDF
    Localized basis ab initio molecular dynamics simulation within the density functional framework has been used to generate realistic configurations of amorphous silicon carbide (a-SiC). Our approach consists of constructing a set of smart initial configurations that conform essential geometrical and structural aspects of the materials obtained from experimental data, which is subsequently driven via first-principles force-field to obtain the best solution in a reduced solution space. A combination of a priori information (primarily structural and topological) along with the ab-initio optimization of the total energy makes it possible to model large system size (1000 atoms) without compromising the quantum mechanical accuracy of the force-field to describe the complex bonding chemistry of Si and C. The structural, electronic and the vibrational properties of the models have been studied and compared to existing theoretical models and available data from experiments. We demonstrate that the approach is capable of producing large, realistic configurations of a-SiC from first-principles simulation that display excellent structural and electronic properties of a-SiC. Our study reveals the presence of predominant short-range order in the material originating from heteronuclear Si-C bonds with coordination defect concentration as small as 5% and the chemical disorder parameter of about 8%.Comment: 16 pages, 7 figure

    Correlation effects and spin dependent transport in carbon nanostructures

    Full text link
    The impact of symmetry breaking perturbations on the spin dependent transport through carbon nanotube quantum dots in the Kondo regime is discussed.Comment: 10 pages, 6 figure
    • …
    corecore