9,203 research outputs found

    Design, taking into account the partial discharges phenomena, of the electrical insulation system (EIS) of high power electrical motors for hybrid electric propulsion of future regional aircrafts

    Get PDF
    La réduction des émissions de CO2 est un enjeu majeur pour l'Europe dans les années à venir. Les transports sont aujourd'hui à l'origine de 24% des émissions globales de CO2. L'aviation ne représente que 2% des émissions globales de CO2. Cependant, le trafic aérien est en pleine expansion et, déjà, des inquiétudes apparaissent. A titre d'exemple, en Suède, depuis les années 1990, les émissions de CO2 dues au trafic aérien ont augmenté de 61%. Ce constat explique l'apparition du mouvement "Flygskam" qui se repend dans de plus en plus de pays Européen. C'est dans ce contexte que l'Union Européenne a lancé en septembre 2016 le projet Hybrid Aircraft Academic research on Thermal and Electrical Components and Systems (HASTECS). Le consortium regroupe différents laboratoires et Airbus. Ce projet s'inscrit dans le programme "Clean Sky 2" qui vise à développer une aviation plus verte. L'objectif ambitieux est de réduire de 20% les émissions de CO2 et le bruit produits par les avions d'ici 2025. Pour cela, le consortium étudie une architecture hybride de type série. La propulsion est assurée par des moteurs électriques. Deux cibles ont été définies. En 2025, les moteurs doivent atteindre une densité de puissance de 5kW/kg, système de refroidissement inclus. En 2035, la densité de puissance des moteurs sera doublée pour atteindre 10kW/kg. Pour atteindre ces cibles, le niveau de tension sera considérablement augmenté, au-delà du kilovolt. Le risque de décharges électriques dans les stators des moteurs électriques est considérablement accru. L'objectif de cette thèse est de mettre au point un outil d'aide au design du Système d'Isolation Electrique (SIE) primaire du stator de moteur électrique piloté par convertisseur. Elle est découpée en cinq parties. La première partie commence par préciser les enjeux et défis d'une aviation plus verte. Le SIE du stator de moteur électrique est développé. Enfin, les contraintes qui s'appliquent sur le SIE dans l'environnement aéronautique sont identifiées. La deuxième partie présente les différents types de décharges électriques que l'on peut retrouver. Le principal risque vient des Décharges Partielles (DP) qui détériorent peu à peu le SIE. Le principal mécanisme pour expliquer l'apparition des DP est l'avalanche électronique. Le critère de Paschen permet d'évaluer le Seuil d'Apparition des Décharges Partielles (SADP). Différentes techniques permettent de détecter et mesurer l'activité des DP. Des modèles numériques permettent d'évaluer le SADP. La troisième partie présente une méthode originale pour déterminer les lignes de champ électrique dans un problème électrostatique. Elle n'utilise qu'une formulation en potentiel scalaire. La quatrième partie présente une étude expérimentale pour établir une correction du critère de Paschen. Un bobinage de moteur électrique est très loin des hypothèses dans lesquelles ce critère a été originellement défini. Enfin, la cinquième partie est consacrée à l'élaboration de l'outil d'aide au design du SIE. Des abaques sont construites afin de fournir des recommandations sur le dimensionnement des différents isolants dans une encoche de stator. Une réduction du SADP due à une variation combinée de la température et de la pression est prise en compte.Reducing CO2 emissions is a major challenge for Europe in the years to come. Nowadays, transport is the source of 24% of global CO2 emissions. Aviation accounts for only 2% of global CO2 emissions. However, air traffic is booming and concerns are emerging. For instance, CO2 emissions from air traffic have increased by 61% in Sweden since the 1990s. This explains the emergence of the "Flygskam" movement which is spreading in more and more European countries. It is in this context that the European Union launched in September 2016 the project Hybrid Aircraft Academic research on Thermal and Electrical Components and Systems (HASTECS). The consortium brings together different laboratories and Airbus. This project is part of the program "Clean Sky 2" which aims to develop a greener aviation. The ambitious goal is to reduce CO2 emissions and the noise produced by aircraft by 20% by 2025. To do that, the consortium is studying a serial hybrid architecture. Propulsion is provided by electric motors. Two targets are defined. In 2025, the engines must reach a power density of 5kW/kg, including the cooling system. In 2035, the power density of the engines will be doubled to reach 10kW/kg. To reach these targets, the voltage level will be considerably increased, beyond one kilovolt. The risk of electric discharges in the stators of electric motors is considerably increased. The objective of this thesis is to develop a tool to assist in the design of the primary Electrical Insulation System (EIS) of the stator of an electric motor controlled by a converter. It is organized in 5 parts. The first part begins by clarifying the issues and challenges of a greener aviation. The electric motor stator EIS is developed. Finally, the constraints that apply to the EIS in the aeronautical environment are identified. The second part presents the different types of electric discharges that can be found. The main risk comes from Partial Discharges (PD) which gradually deteriorate the EIS. The main mechanism for explaining the appearance of PD is the electronic avalanche. The Paschen criterion makes it possible to evaluate the Partial Discharge Inception Voltage (PDIV). Different techniques are used to detect and measure the activity of PD. Numerical models are used to evaluate the PDIV. The third part presents an original method for determining the electric field lines in an electrostatic problem. It only uses a scalar potential formulation. The fourth part presents an experimental study to establish a correction of the Paschen criterion. An electric motor winding is very far from the hypotheses in which this criterion was originally defined. Finally, the fifth part is devoted to the development of the SIE design aid tool. Graphs are generated to provide recommendations on the sizing of the various insulators in a stator slot. A reduction in the PDIV due to a combined variation in temperature and pressure is taken into account

    Effects of arcing due to spacecraft charging on spacecraft survival

    Get PDF
    A quantitative assessment of the hazard associated with spacecraft charging and arcing on spacecraft systems is presented. A literature survey on arc discharge thresholds and characteristics was done and gaps in the data and requirements for additional experiments were identified. Calculations of coupling of arc discharges into typical spacecraft systems were made and the susceptibility of typical spacecraft to disruption by arc discharges was investigated. Design guidelines and recommended practices to reduce or eliminate the threat of malfunction and failures due to spacecraft charging/arcing were summarized

    OXIDATION OF SILICON - THE VLSI GATE DIELECTRIC

    Get PDF
    Silicon dominates the semiconductor industry for good reasons. One factor is the stable, easily formed, insulating oxide, which aids high performance and allows practical processing. How well can these virtues survive as new demands are made on integrity, on smallness of feature sizes and other dimensions, and on constraints on processing and manufacturing methods? These demands make it critical to identify, quantify and predict the key controlling growth and defect processes on an atomic scale.The combination of theory and novel experiments (isotope methods, electronic noise, spin resonance, pulsed laser atom probes and other desorption methods, and especially scanning tunnelling or atomic force microscopies) provide tools whose impact on models is just being appreciated. We discuss the current unified model for silicon oxidation, which goes beyond the traditional descriptions of kinetic and ellipsometric data by explicitly addressing the issues raised in isotope experiments. The framework is still the Deal-Grove model, which provides a phenomenology to describe the major regimes of behaviour, and gives a base from which the substantial deviations can be characterized. In this model, growth is limited by diffusion and interfacial reactions operating in series. The deviations from Deal-Grove are most significant for just those first tens of atomic layers of oxide which are critical for the ultra-thin oxide layers now demanded. Several features emerge as important. First is the role of stress and stress relaxation. Second is the nature of the oxide closest to the Si, both its defects and its differences from the amorphous stoichiometric oxide further out, whether in composition, in network topology, or otherwise. Thirdly, we must consider the charge states of both fixed and mobile species. In thin films with very different dielectric constants, image terms can be important; these terms affect interpretation of spectroscopies, the injection of oxidant species and relative defect stabilities. This has added importance now that P-b concentrations have been correlated with interfacial stress. This raises further issues about the perfection of the oxide random network and the incorporation of interstitial species like molecular oxygen.Finally, the roles of contamination, particles, metals, hydrocarbons etc are important, as is interface roughness. These features depend on pre-gate oxide cleaning and define the Si surface that is to be oxidized which may have an influence on the features listed above

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Charging and Discharging Mechanism of Polyimide under Electron Irradiation and High Voltage

    Get PDF
    Polyimide has been widely used as insulating and structural materials in spacecraft due to its excellent electrical, thermal and mechanical properties. However, its charging and discharging problem in harsh space environment has been a major limit to the development of high-voltage and high-power spacecraft. In this chapter, charging and discharging phenomena of dielectric materials under electron irradiation environment were presented. First, the electrical properties of polyimide consisting of dielectric properties, trap properties, conductivity and electrical breakdown properties were investigated, which have great influences on charging and discharging characteristics. Then, a surface charging model under relatively low-energy electron irradiation was proposed for polyimide, based on the synergistic effects of electron movement above surface and charge transport in surface layer. The DC surface flashover of polyimide under electron irradiation with different energies, fluxes and incident angles was investigated. Furthermore, a deep charging model under high-energy electron irradiation with the Fluence Model for Internal Charging (FLUMIC) spectrum was established. The effects of electron flux enhancement and operating voltage on charging characteristics were discussed in different grounding modes. It indicates that the processes of discharging under electron irradiation have a close link with the charge transport characteristics of polyimide

    Organic Single-Crystal Field-Effect Transistors

    Full text link
    We present an overview of recent studies of the charge transport in the field effect transistors on the surface of single crystals of organic low-molecular-weight materials. We first discuss in detail the technological progress that has made these investigations possible. Particular attention is devoted to the growth and characterization of single crystals of organic materials and to different techniques that have been developed for device fabrication. We then concentrate on the measurements of the electrical characteristics. In most cases, these characteristics are highly reproducible and demonstrate the quality of the single crystal transistors. Particularly noticeable are the small sub-threshold slope, the non-monotonic temperature dependence of the mobility, and its weak dependence on the gate voltage. In the best rubrene transistors, room-temperature values of μ\mu as high as 15 cm2^2/Vs have been observed. This represents an order-of-magnitude increase with respect to the highest mobility previously reported for organic thin film transistors. In addition, the highest-quality single-crystal devices exhibit a significant anisotropy of the conduction properties with respect to the crystallographic direction. These observations indicate that the field effect transistors fabricated on single crystals are suitable for the study of the \textit{intrinsic} electronic properties of organic molecular semiconductors. We conclude by indicating some directions in which near-future work should focus to progress further in this rapidly evolving area of research.Comment: Review article, to appear in special issue of Phys. Stat. Sol. on organic semiconductor
    corecore