244 research outputs found

    Analysis And Design Optimization Of Multiphase Converter

    Get PDF
    Future microprocessors pose many challenges to the power conversion techniques. Multiphase synchronous buck converters have been widely used in high current low voltage microprocessor application. Design optimization needs to be carefully carried out with pushing the envelope specification and ever increasing concentration towards power saving features. In this work, attention has been focused on dynamic aspects of multiphase synchronous buck design. The power related issues and optimizations have been comprehensively investigated in this paper. In the first chapter, multiphase DC-DC conversion is presented with background application. Adaptive voltage positioning and various nonlinear control schemes are evaluated. Design optimization are presented to achieve best static efficiency over the entire load range. Power loss analysis from various operation modes and driver IC definition are studied thoroughly to better understand the loss terms and minimize the power loss. Load adaptive control is then proposed together with parametric optimization to achieve optimum efficiency figure. New nonlinear control schemes are proposed to improve the transient response, i.e. load engage and load release responses, of the multiphase VR in low frequency repetitive transient. Drop phase optimization and PWM transition from long tri-state phase are presented to improve the smoothness and robustness of the VR in mode transition. During high frequency repetitive transient, the control loop should be optimized and nonlinear loop should be turned off. Dynamic current sharing are thoroughly studied in chapter 4. The output impedance of the multiphase v synchronous buck are derived to assist the analysis. Beat frequency is studied and mitigated by proposing load frequency detection scheme by turning OFF the nonlinear loop and introducing current protection in the control loop. Dynamic voltage scaling (DVS) is now used in modern Multi-Core processor (MCP) and multiprocessor System-on-Chip (MPSoC) to reduce operational voltage under light load condition. With the aggressive motivation to boost dynamic power efficiency, the design specification of voltage transition (dv/dt) for the DVS is pushing the physical limitation of the multiphase converter design and the component stress as well. In this paper, the operation modes and modes transition during dynamic voltage transition are illustrated. Critical dead-times of driver IC design and system dynamics are first studied and then optimized. The excessive stress on the control MOSFET which increases the reliability concern is captured in boost mode operation. Feasible solutions are also proposed and verified by both simulation and experiment results. CdV/dt compensation for removing the AVP effect and novel nonlinear control scheme for smooth transition are proposed for dealing with fast voltage positioning. Optimum phase number control during dynamic voltage transition is also proposed and triggered by voltage identification (VID) delta to further reduce the dynamic loss. The proposed schemes are experimentally verified in a 200 W six phase synchronous buck converter. Finally, the work is concluded. The references are listed

    Mixed-source charger-supply CMOS IC

    Get PDF
    The proposed research objective is to develop, test, and evaluate a mixer and charger-supply CMOS IC that derives and mixes energy and power from mixed sources to accurately supply a miniaturized system. Since the energy-dense source stores more energy than the power-dense source while the latter supplies more power than the former, the proposed research aims to develop an IC that automatically selects how much and from which source to draw power to maximize lifetime per unit volume. Today, the state of the art lacks the intelligence and capability to select the most appropriate source from which to extract power to supply the time-varying needs of a small system. As such, the underlying objective and benefit of this research is to reduce the size of a complete electronic system so that wireless sensors and biomedical implants, for example, as a whole, perform well, operate for extended periods, and integrate into tiny spaces.Ph.D

    Reset-sensing quasi-V2 single-inductor multiple-output buck converter with reduced cross-regulation

    Get PDF
    This paper proposes a reset-sensing quasi-V2 single-inductor multiple-output (SIMO) converter with minimal cross-regulation. The conventional quasi-V2 sensing scheme in SIMO converters suffers from serious cross-regulation which is primarily induced by the load differentiation with unbalanced loads. It is shown that the proposed reset-sensing quasi-V2 control scheme can significantly reduce cross-regulation by completely discharging the feed-forward sensing node to zero volts during the idle phase in Discontinuous Conduction Mode (DCM). The cross-regulation with the conventional quasi-V2 single-inductor dual-output (SIDO) converter for a load current step of 150 mA is experimentally verified to be more than 1.25 mV/mA. By employing the proposed quasi-V2 control method, the experimental results demonstrate that the cross-regulation for a load current step of 150 mA is significantly reduced to within 0.087 mV/mA. Hence, with the proposed scheme, a load transient in one output will have a minimal effect on the DC operating point of another output. This enables separate current control at each individually-driven output of a SIMO converter. © IEEE.published_or_final_versio

    Efficient and Robust Simulation, Modeling and Characterization of IC Power Delivery Circuits

    Get PDF
    As the Moore’s Law continues to drive IC technology, power delivery has become one of the most difficult design challenges. Two of the major components in power delivery are DC-DC converters and power distribution networks, both of which are time-consuming to simulate and characterize using traditional approaches. In this dissertation, we propose a complete set of solutions to efficiently analyze DC-DC converters and power distribution networks by finding a perfect balance between efficiency and accuracy. To tackle the problem, we first present a novel envelope following method based on a numerically robust time-delayed phase condition to track the envelopes of circuit states under a varying switching frequency. By adopting three fast simulation techniques, our proposed method achieves higher speedup without comprising the accuracy of the results. The robustness and efficiency of the proposed method are demonstrated using several DCDC converter and oscillator circuits modeled using the industrial standard BSIM4 transistor models. A significant runtime speedup of up to 30X with respect to the conventional transient analysis is achieved for several DC-DC converters with strong nonlinear switching characteristics. We then take another approach, average modeling, to enhance the efficiency of analyzing DC-DC converters. We proposed a multi-harmonic model that not only predicts the DC response but also captures the harmonics of arbitrary degrees. The proposed full-order model retains the inductor current as a state variable and accurately captures the circuit dynamics even in the transient state. Furthermore, by continuously monitoring state variables, our model seamlessly transitions between continuous conduction mode and discontinuous conduction mode. The proposed model, when tested with a system decoupling technique, obtains up to 10X runtime speedups over transistor-level simulations with a maximum output voltage error that never exceeds 4%. Based on the multi-harmonic averaged model, we further developed the small-signal model that provides a complete characterization of both DC averages and higher-order harmonic responses. The proposed model captures important high-frequency overshoots and undershoots of the converter response, which are otherwise unaccounted for by the existing techniques. In two converter examples, the proposed model corrects the misleading results of the existing models by providing the truthful characterization of the overall converter AC response and offers important guidance for converter design and closed-loop control. To address the problem of time-consuming simulation of power distribution networks, we present a partition-based iterative method by integrating block-Jacobi method with support graph method. The former enjoys the ease of parallelization, however, lacks a direct control of the numerical properties of the produced partitions. In contrast, the latter operates on the maximum spanning tree of the circuit graph, which is optimized for fast numerical convergence, but is bottlenecked by its difficulty of parallelization. In our proposed method, the circuit partitioning is guided by the maximum spanning tree of the underlying circuit graph, offering essential guidance for achieving fast convergence. The resulting block-Jacobi-like preconditioner maximizes the numerical benefit inherited from support graph theory while lending itself to straightforward parallelization as a partitionbased method. The experimental results on IBM power grid suite and synthetic power grid benchmarks show that our proposed method speeds up the DC simulation by up to 11.5X over a state-of-the-art direct solver

    Digitally assisted control techniques for high performance switching DC-DC converters

    Get PDF
    Digitally controlled switching DC-DC converters have recently emerged as an attractive alternative to conventional switching converters based on analog control techniques. This research focuses on eliminating the issues associated with the state of the art switching converters by proposing three novel control techniques: (1) a digitally controlled Buck-Boost converter uses a fully synthesized constant ON/OFF time-based fractional-N controller to regulate the output over a 3.3V-to-5.5V input voltage range and provides seamless transition from buck to buck-boost modes (2) a hysteretic buck converter that employs a highly digital hybrid voltage/current mode control to regulate output voltage and switching frequency independently (3) a 10MHz continuous time PID controller using time based signal processing which alleviates the speed limitations associated with conventional analog and digital. All the three techniques employ digitally assisted control techniques and require no external compensation thus making the controllers fully integrated and highly cost effective

    Multiphase current-controlled buck converter with energy recycling output impedance correction circuit (OICC)

    Get PDF
    This study is related to the improvement of the output impedance of a multiphase buck converter with peak current mode control (PCMC) by means of introducing an additional power path, which virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a single-phase buck converter with voltage mode control, while in the voltage regulation module applications, due to the high currents and dynamic specifications, the system is usually implemented as a multiphase buck converter with current mode control to ensure current sharing. The proposed circuit, output impedance correction circuit (OICC), is used to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, the OICC concept is extended to a multiphase buck converter system and the proposed solution is compared with the system that has n times bigger output capacitor in terms of dynamic behavior and static and dynamic efficiency. The OICC is implemented as a synchronous buck converter with PCMC, thus reducing its penalty on the system efficiency

    Integrated CMOS Energy Harvesting Converter with Digital Maximum Power Point Tracking for a Portable Thermophotovoltaic Power Generator

    Get PDF
    This paper presents an integrated maximum power point tracking system for use with a thermophotovoltaic (TPV) portable power generator. The design, implemented in 0.35 ÎĽm CMOS technology, consists of a low-power control stage and a dc-dc boost power stage with soft-switching capability. With a nominal input voltage of 1 V, and an output voltage of 4 V, we demonstrate a peak conversion efficiency under nominal conditions of over 94% (overall peak efficiency over 95%), at a power level of 300 mW. The control stage uses lossless current sensing together with a custom low-power time-based ADC to minimize control losses. The converter employs a fully integrated digital implementation of a peak power tracking algorithm, and achieves a measured tracking efficiency above 98%. A detailed study of achievable efficiency versus inductor size is also presented, with calculated and measured results.Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation
    • …
    corecore