83 research outputs found

    Characterizing the evolution of statically-detectable performance issues of Android apps

    Get PDF
    Mobile apps are playing a major role in our everyday life, and they are tending to become more and more complex and resource demanding. Because of that, performance issues may occur, disrupting the user experience or, even worse, preventing an effective use of the app. Ultimately, such problems can cause bad reviews and influence the app success. Developers deal with performance issues thorough dynamic analysis, i.e., performance testing and profiler tools, albeit static analysis tools can be a valid, relatively inexpensive complement for the early detection of some such issues. This paper empirically investigates how potential performance issues identified by a popular static analysis tool — Android Lint — are actually resolved in 316 open source Android apps among 724 apps we analyzed. More specifically, the study traces the issues detected by Android Lint since their introduction until they resolved, with the aim of studying (i) the overall evolution of performance issues in apps, (ii) the proportion of issues being resolved, as well as (iii) the distribution of their survival time, and (iv) the extent to which issue resolution are documented by developers in commit messages. Results indicate how some issues, especially related to the lack of resource recycle, tend to be more frequent than others. Also, while some issues, primarily of algorithmic nature, tend to be resolved quickly through well-known patterns, others tend to stay in the app longer, or not to be resolved at all. Finally, we found how only 10% of the issue resolution is documented in commit messages

    Dependability where the mobile world meets the enterprise world

    Get PDF
    As we move toward increasingly larger scales of computing, complexity of systems and networks has increased manifold leading to massive failures of cloud providers (Amazon Cloudfront, November 2014) and geographically localized outages of cellular services (T-Mobile, June 2014). In this dissertation, we investigate the dependability aspects of two of the most prevalent computing platforms today, namely, smartphones and cloud computing. These two seemingly disparate platforms are part of a cohesive story—they interact to provide end-to-end services which are increasingly being delivered over mobile platforms, examples being iCloud, Google Drive and their smartphone counterparts iPhone and Android. ^ In one of the early work on characterizing failures in dominant mobile OSes, we analyzed bug repositories of Android and Symbian and found similarities in their failure modes [ISSRE2010]. We also presented a classification of root causes and quantified the impact of ease of customizing the smartphones on system reliability. Our evaluation of Inter-Component Communication in Android [DSN2012] show an alarming number of exception handling errors where a phone may be crashed by passing it malformed component invocation messages, even from unprivileged applications. In this work, we also suggest language extensions that can mitigate these problems. ^ Mobile applications today are increasingly being used to interact with enterprise-class web services commonly hosted in virtualized environments. Virutalization suffers from the problem of imperfect performance isolation where contention for low-level hardware resources can impact application performance. Through a set of rigorous experiments in a private cloud testbed and in EC2, we show that interference induced performance degradation is a reality. Our experiments have also shown that optimal configuration settings for web servers change during such phases of interference. Based on this observation, we design and implement the IC 2engine which can mitigate effects of interference by reconfiguring web server parameters [MW2014]. We further improve IC 2 by incorporating it into a two-level configuration engine, named ICE, for managing web server clusters [ICAC2015]. Our evaluations show that, compared to an interference agnostic configuration, IC 2 can improve response time of web servers by upto 40%, while ICE can improve response time by up to 94% during phases of interference

    Android source code vulnerability detection: a systematic literature review

    Get PDF
    The use of mobile devices is rising daily in this technological era. A continuous and increasing number of mobile applications are constantly offered on mobile marketplaces to fulfil the needs of smartphone users. Many Android applications do not address the security aspects appropriately. This is often due to a lack of automated mechanisms to identify, test, and fix source code vulnerabilities at the early stages of design and development. Therefore, the need to fix such issues at the initial stages rather than providing updates and patches to the published applications is widely recognized. Researchers have proposed several methods to improve the security of applications by detecting source code vulnerabilities and malicious codes. This Systematic Literature Review (SLR) focuses on Android application analysis and source code vulnerability detection methods and tools by critically evaluating 118 carefully selected technical studies published between 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques and potential improvements of those studies. Both Machine Learning (ML) based methods and conventional methods related to vulnerability detection are discussed while focusing more on ML-based methods since many recent studies conducted experiments with ML. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in secure mobile application development while minimizing the vulnerabilities by applying ML methods. Furthermore, researchers can use the discussions and findings of this SLR to identify potential future research and development directions

    Analysis and Classification of Android Malware

    Get PDF

    Machine Learning and other Computational-Intelligence Techniques for Security Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Android source code vulnerability detection: a systematic literature review

    Get PDF
    The use of mobile devices is rising daily in this technological era. A continuous and increasing number of mobile applications are constantly offered on mobile marketplaces to fulfil the needs of smartphone users. Many Android applications do not address the security aspects appropriately. This is often due to a lack of automated mechanisms to identify, test, and fix source code vulnerabilities at the early stages of design and development. Therefore, the need to fix such issues at the initial stages rather than providing updates and patches to the published applications is widely recognized. Researchers have proposed several methods to improve the security of applications by detecting source code vulnerabilities and malicious codes. This Systematic Literature Review (SLR) focuses on Android application analysis and source code vulnerability detection methods and tools by critically evaluating 118 carefully selected technical studies published between 2016 and 2022. It highlights the advantages, disadvantages, applicability of the proposed techniques and potential improvements of those studies. Both Machine Learning (ML) based methods and conventional methods related to vulnerability detection are discussed while focusing more on ML-based methods since many recent studies conducted experiments with ML. Therefore, this paper aims to enable researchers to acquire in-depth knowledge in secure mobile application development while minimizing the vulnerabilities by applying ML methods. Furthermore, researchers can use the discussions and findings of this SLR to identify potential future research and development directions
    • …
    corecore