32 research outputs found

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Linear Operation of Switch-Mode Outphasing Power Amplifiers

    Get PDF
    Radio transceivers are playing an increasingly important role in modern society. The ”connected” lifestyle has been enabled by modern wireless communications. The demand that has been placed on current wireless and cellular infrastructure requires increased spectral efficiency however this has come at the cost of power efficiency. This work investigates methods of improving wireless transceiver efficiency by enabling more efficient power amplifier architectures, specifically examining the role of switch-mode power amplifiers in macro cell scenarios. Our research focuses on the mechanisms within outphasing power amplifiers which prevent linear amplification. From the analysis it was clear that high power non-linear effects are correctable with currently available techniques however non-linear effects around the zero crossing point are not. As a result signal processing techniques for suppressing and avoiding non-linear operation in low power regions are explored. A novel method of digital pre-distortion is presented, and conventional techniques for linearisation are adapted for the particular needs of the outphasing power amplifier. More unconventional signal processing techniques are presented to aid linearisation of the outphasing power amplifier, both zero crossing and bandwidth expansion reduction methods are designed to avoid operation in nonlinear regions of the amplifiers. In combination with digital pre-distortion the techniques will improve linearisation efforts on outphasing systems with dynamic range and bandwidth constraints respectively. Our collaboration with NXP provided access to a digital outphasing power amplifier, enabling empirical analysis of non-linear behaviour and comparative analysis of behavioural modelling and linearisation efforts. The collaboration resulted in a bench mark for linear wideband operation of a digital outphasing power amplifier. The complimentary linearisation techniques, bandwidth expansion reduction and zero crossing reduction have been evaluated in both simulated and practical outphasing test benches. Initial results are promising and indicate that the benefits they provide are not limited to the outphasing amplifier architecture alone. Overall this thesis presents innovative analysis of the distortion mechanisms of the outphasing power amplifier, highlighting the sensitivity of the system to environmental effects. Practical and novel linearisation techniques are presented, with a focus on enabling wide band operation for modern communications standards

    Analysis and design of ΣΔ Modulators for Radio Frequency Switchmode Power Amplifiers

    Get PDF
    Power amplifiers are an integral part of every basestation, macrocell, microcell and mobile phone, enabling data to be sent over the distances needed to reach the receiver’s antenna. While linear operation is needed for transmitting WCDMA and OFDM signals, linear operation of a power amplifier is characterized by low power efficiency, and contributes to unwanted power dissipation in a transmitter. Recently, a switchmode power amplifier operation was considered for reducing power losses in a RF transmitter. A linear and efficient operation of a PA can be achieved when the transmitted RF signal is ΣΔ modu- lated, and subsequently amplified by a nonlinear device. Although in theory this approach offers linearity and efficiency reaching 100%, the use of ΣΔ modulation for transmitting wideband signals causes problems in practical implementation: it requires high sampling rate by the digital hardware, which is needed for shaping large contents of a quantization noise induced by the modulator but also, the binary output from the modulator needs an RF power amplifier operating over very wide frequency band. This thesis addresses the problem of noise shaping in a ΣΔ modulator and nonlinear distortion caused by broadband operation in switchmode power amplifier driven by a ΣΔ modulated waveform. The problem of sampling rate increase in a ΣΔ modulator is solved by optimizing structure of the modulator, and subsequent processing of an input signal’s samples in parallel. Independent from the above, a novel technique for reducing quan- tization noise in a bandpass ΣΔ modulator using single bit quantizer is presented. The technique combines error pulse shaping and 3-level quantization for improving signal to noise ratio in a 2-level output. The improvement is achieved without the increase of a digital hardware’s sampling rate, which is advantageous also from the perspective of power consumption. The new method is explored in the course of analysis, and verified by simulated and experimental results. The process of RF signal conversion from the Cartesian to polar form is analyzed, and a signal modulator for a polar transmitter with a ΣΔ-digitized envelope signal is designed and implemented. The new modulator takes an advantage of bandpass digital to analog conversion for simplifying the analog part of the modulator. A deformation of the pulsed RF signal in the experimental modulator is demonstrated to have an effect primarily on amplitude of the RF signal, which is correctable with simple predistortion

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.

    Time-Mode Analog Circuit Design for Nanometric Technologies

    Get PDF
    Rapid scaling in technology has introduced new challenges in the realm of traditional analog design. Scaling of supply voltage directly impacts the available voltage-dynamic-range. On the other hand, nanometric technologies with fT in the hundreds of GHz range open opportunities for time-resolution-based signal processing. With reduced available voltage-dynamic-range and improved timing resolution, it is more convenient to devise analog circuits whose performance depends on edge-timing precision rather than voltage levels. Thus, instead of representing the data/information in the voltage-mode, as a difference between two node voltages, it should be represented in time-mode as a time-difference between two rising and/or falling edges. This dissertation addresses the feasibility of employing time-mode analog circuit design in different applications. Specifically: 1) Time-mode-based quanitzer and feedback DAC of SigmaDelta ADC. 2) Time-mode-based low-THD 10MHz oscillator, 3) A Spur-Frequency Boosting PLL with -74dBc Reference-Spur Rejection in 90nm Digital CMOS. In the first project, a new architectural solution is proposed to replace the DAC and the quantizer by a Time-to-Digital converter. The architecture has been fabricated in 65nm and shows that this technology node is capable of achieving a time-matching of 800fs which has never been reported. In addition, a competitive figure-of-merit is achieved. In the low-THD oscillator, I proposed a new architectural solution for synthesizing a highly-linear sinusoidal signal using a novel harmonic rejection approach. The chip is fabricated in 130nm technology and shows an outstanding performance compared to the state of the art. The designed consumes 80% less power; consumes less area; provides much higher amplitude while being composed of purely digital circuits and passive elements. Last but not least, the spur-frequency boosting PLL employs a novel technique that eliminates the reference spurs. Instead of adding additional filtering at the reference frequency, the spur frequency is boosted to higher frequency which is, naturally, has higher filtering effects. The prototype is fabricated in 90nm digital CMOS and proved to provide the lowest normalized reference spurs ever reported

    High-accuracy switched-capacitor techniques applied to filter and ADC design

    Get PDF

    A low-power reconfigurable analog-to-digital converter

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 197-200).This thesis presents the concept, theory and design of a low power CMOS analog-to-digital converter that can digitize signals over a wide range of bandwidth and resolution with adaptive power consumption. The converter achieves the wide operating range by reconfiguring (1) its architecture between pipeline and delta-sigma modes (2) by varying its circuit parameters such as size of capacitors, length of pipeline, oversampling ratio, among others and (3) by varying the bias currents of the opamps in proportion with converter sampling frequency, accomplished through the use of a phase-locked loop. Target input signals for this ADC include high frequency and moderate resolution signals such as video and low I.F. in radio Receivers, low frequency and high resolution signals from seismic sensors and MEMs devices, and others that fall in between these extremes such as audio, voice and general purpose data-acquisition. This converter also incorporates several power reducing features such as thermal noise limited design, global converter chopping in the pipeline mode, opamp scaling, opamp sharing between consecutive stages in the pipeline mode, an opamp chopping technique in the delta-sigma mode, and other design techniques. The opamp chopping technique achieves faster closed-loop settling time and lower thermal noise than conventional design.(cont.) At a converter power supply at 3.3V, the converter achieves a bandwidth range of 0-10MHz over a resolution range of 6 -16 bits, and parameter reconfiguration time of 12 clock cycles. Its PLL lock range is measured at 20KHz to 40MHz. In the delta-sigma mode, it achieves a maximum SNR of 94dB and second and third harmonic distortions of 102dB and 95dB, respectively at 10MHz clock frequency, 9.4KHz bandwidth, and 17.6mW power. In the pipeline mode, it achieves a maximum DNL and INL of +/-0.55LSBs and +/-0.82LSBs, respectively, at 11-bits of resolution, at a clock frequency of 2.6MHz and 1MHz tone with 24.6mW of power.by Kush Gulati.Ph.D

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    corecore