462 research outputs found

    Discovering and Mitigating Social Data Bias

    Get PDF
    abstract: Exabytes of data are created online every day. This deluge of data is no more apparent than it is on social media. Naturally, finding ways to leverage this unprecedented source of human information is an active area of research. Social media platforms have become laboratories for conducting experiments about people at scales thought unimaginable only a few years ago. Researchers and practitioners use social media to extract actionable patterns such as where aid should be distributed in a crisis. However, the validity of these patterns relies on having a representative dataset. As this dissertation shows, the data collected from social media is seldom representative of the activity of the site itself, and less so of human activity. This means that the results of many studies are limited by the quality of data they collect. The finding that social media data is biased inspires the main challenge addressed by this thesis. I introduce three sets of methodologies to correct for bias. First, I design methods to deal with data collection bias. I offer a methodology which can find bias within a social media dataset. This methodology works by comparing the collected data with other sources to find bias in a stream. The dissertation also outlines a data collection strategy which minimizes the amount of bias that will appear in a given dataset. It introduces a crawling strategy which mitigates the amount of bias in the resulting dataset. Second, I introduce a methodology to identify bots and shills within a social media dataset. This directly addresses the concern that the users of a social media site are not representative. Applying these methodologies allows the population under study on a social media site to better match that of the real world. Finally, the dissertation discusses perceptual biases, explains how they affect analysis, and introduces computational approaches to mitigate them. The results of the dissertation allow for the discovery and removal of different levels of bias within a social media dataset. This has important implications for social media mining, namely that the behavioral patterns and insights extracted from social media will be more representative of the populations under study.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Detecting sociosemantic communities by applying social network analysis in tweets

    Get PDF
    International audienceVirtual social networks have led to a new way of communication that is different from the oral one, where the restriction of time and space generates new linguistic practices. Twitter, a medium for political and social discussion, can be analyzed to understand new ways of communication and to explore sociosemiotics aspects that come with the use of the hashtags and their relationship with other elements. This paper presents a quantitative study of tweets, around a fixed hashtag, in relation with other contents that users bring to connection. By calculating the frequency of terms, a table of nodes and edges is created to visualize tweets like graphs. Our study applies social network analysis that, going beyond mere topology, reveals relevant sociosemantic communities providing insights for the comparison of social and political movements

    Mining Social Media to Understand Consumers' Health Concerns and the Public's Opinion on Controversial Health Topics.

    Full text link
    Social media websites are increasingly used by the general public as a venue to express health concerns and discuss controversial medical and public health issues. This information could be utilized for the purposes of public health surveillance as well as solicitation of public opinions. In this thesis, I developed methods to extract health-related information from multiple sources of social media data, and conducted studies to generate insights from the extracted information using text-mining techniques. To understand the availability and characteristics of health-related information in social media, I first identified the users who seek health information online and participate in online health community, and analyzed their motivations and behavior by two case studies of user-created groups on MedHelp and a diabetes online community on Twitter. Through a review of tweets mentioning eye-related medical concepts identified by MetaMap, I diagnosed the common reasons of tweets mislabeled by natural language processing tools tuned for biomedical texts, and trained a classifier to exclude non medically-relevant tweets to increase the precision of the extracted data. Furthermore, I conducted two studies to evaluate the effectiveness of understanding public opinions on controversial medical and public health issues from social media information using text-mining techniques. The first study applied topic modeling and text summarization to automatically distill users' key concerns about the purported link between autism and vaccines. The outputs of two methods cover most of the public concerns of MMR vaccines reported in previous survey studies. In the second study, I estimated the public's view on the ac{ACA} by applying sentiment analysis to four years of Twitter data, and demonstrated that the the rates of positive/negative responses measured by tweet sentiment are in general agreement with the results of Kaiser Family Foundation Poll. Finally, I designed and implemented a system which can automatically collect and analyze online news comments to help researchers, public health workers, and policy makers to better monitor and understand the public's opinion on issues such as controversial health-related topics.PhDInformationUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120714/1/owenliu_1.pd

    Twitter and Research: A Systematic Literature Review Through Text Mining

    Get PDF

    AI approaches to understand human deceptions, perceptions, and perspectives in social media

    Get PDF
    Social media platforms have created virtual space for sharing user generated information, connecting, and interacting among users. However, there are research and societal challenges: 1) The users are generating and sharing the disinformation 2) It is difficult to understand citizens\u27 perceptions or opinions expressed on wide variety of topics; and 3) There are overloaded information and echo chamber problems without overall understanding of the different perspectives taken by different people or groups. This dissertation addresses these three research challenges with advanced AI and Machine Learning approaches. To address the fake news, as deceptions on the facts, this dissertation presents Machine Learning approaches for fake news detection models, and a hybrid method for topic identification, whether they are fake or real. To understand the user\u27s perceptions or attitude toward some topics, this study analyzes the sentiments expressed in social media text. The sentiment analysis of posts can be used as an indicator to measure how topics are perceived by the users and how their perceptions as a whole can affect decision makers in government and industry, especially during the COVID-19 pandemic. It is difficult to measure the public perception of government policies issued during the pandemic. The citizen responses to the government policies are diverse, ranging from security or goodwill to confusion, fear, or anger. This dissertation provides a near real-time approach to track and monitor public reactions toward government policies by continuously collecting and analyzing Twitter posts about the COVID-19 pandemic. To address the social media\u27s overwhelming number of posts, content echo-chamber, and information isolation issue, this dissertation provides a multiple view-based summarization framework where the same contents can be summarized according to different perspectives. This framework includes components of choosing the perspectives, and advanced text summarization approaches. The proposed approaches in this dissertation are demonstrated with a prototype system to continuously collect Twitter data about COVID-19 government health policies and provide analysis of citizen concerns toward the policies, and the data is analyzed for fake news detection and for generating multiple-view summaries
    • …
    corecore