348 research outputs found

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Towards Scalable Design of Future Wireless Networks

    Full text link
    Wireless operators face an ever-growing challenge to meet the throughput and processing requirements of billions of devices that are getting connected. In current wireless networks, such as LTE and WiFi, these requirements are addressed by provisioning more resources: spectrum, transmitters, and baseband processors. However, this simple add-on approach to scale system performance is expensive and often results in resource underutilization. What are, then, the ways to efficiently scale the throughput and operational efficiency of these wireless networks? To answer this question, this thesis explores several potential designs: utilizing unlicensed spectrum to augment the bandwidth of a licensed network; coordinating transmitters to increase system throughput; and finally, centralizing wireless processing to reduce computing costs. First, we propose a solution that allows LTE, a licensed wireless standard, to co-exist with WiFi in the unlicensed spectrum. The proposed solution bridges the incompatibility between the fixed access of LTE, and the random access of WiFi, through channel reservation. It achieves a fair LTE-WiFi co-existence despite the transmission gaps and unequal frame durations. Second, we consider a system where different MIMO transmitters coordinate to transmit data of multiple users. We present an adaptive design of the channel feedback protocol that mitigates interference resulting from the imperfect channel information. Finally, we consider a Cloud-RAN architecture where a datacenter or a cloud resource processes wireless frames. We introduce a tree-based design for real-time transport of baseband samples and provide its end-to-end schedulability and capacity analysis. We also present a processing framework that combines real-time scheduling with fine-grained parallelism. The framework reduces processing times by migrating parallelizable tasks to idle compute resources, and thus, decreases the processing deadline-misses at no additional cost. We implement and evaluate the above solutions using software-radio platforms and off-the-shelf radios, and confirm their applicability in real-world settings.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133358/1/gkchai_1.pd

    Contribution to the integration, performance improvement, and smart management of data and resources in the Internet of Things

    Get PDF
    [SPA] Esta tesis doctoral se presenta bajo la modalidad de compendio de publicaciones.[ENG] This doctoral dissertation has been presented in the form of thesis by publication. The IoT has seen a tremendous growth in the last few years. Not only due to its potential to transform societies, but also as an enabling technology for many other technological advances. Unfortunately, the IoT is a relatively recent paradigm that lacks the maturity of other well-established (not so recent) revolutions like the internet itself or Wireless Sensor Networks; upon which the IoT is built. The presented Thesis contributes to this maturation process by researching on the underlying communication mechanisms that enable a truly ubiquitous and effective IoT. As a Thesis by compilation, 5 relevant articles are introduced and discussed. Each of such articles delve into different key aspects that, in their own way, help closing the gap between what the IoT is expected to bring and what the IoT actually brings. As thoroughly commented throughout the main text, the comprehensive approach taken in this Thesis ensures that multiple angles of the same plane --the communication plane-- are analyzed and studied. From the mathematical analysis of how electromagnetic waves propagate through complex environments to the utilization of recent Machine Learning techniques, this Thesis explore a wide range of scientific and researching tools that are shown to improve the final performance of the IoT. In the first three chapters of this document, the reader will be introduced to the current context and state-of-the-art of the IoT while, at the same time, the formal objectives of this Thesis are outlined and set into such a global context. In the next five chapters, the five corresponding articles are presented and commented. For each and every of these articles: a brief abstract, a methodology summary, a highlight on the results and contributions and final conclusions are also added. Lastly, in the two last chapters, the final conclusions and future lines of this Thesis are commented.Los artículos que componen la tesis son los siguientes: 1. R. M. Sandoval, A.-J. J. Garcia-Sanchez, F. Garcia-Sanchez, and J. Garcia-Haro, \Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz," Sensors, vol. 17, no. 1, p. 76, Dec. 2016. 2. R. M. Sandoval, A.-J. J. Garcia-Sanchez, J.-M. M. Molina-Garcia-Pardo, F. Garcia-Sanchez, and J. Garcia-Haro, \Radio-Channel Characterization of Smart Grid Substations in the 2.4-GHz ISM Band," IEEE Trans. Wirel. Commun., vol. 16, no. 2, pp. 1294{1307, Feb. 2017. 3. R. M. Sandoval, A. J. Garcia-Sanchez, and J. Garcia-Haro, \Improving RSSI-based path-loss models accuracy for critical infrastructures: A smart grid substation case-study," IEEE Trans. Ind. Informatics, vol. 14, no. 5, pp. 2230{2240, 2018. 4. R. M. Sandoval, A.-J. Garcia-Sanchez, J. Garcia-Haro, and T. M. Chen, \Optimal policy derivation for Transmission Duty-Cycle constrained LPWAN," IEEE Internet Things J., vol. 5, no. 4, pp. 1{1, Aug. 2018. 5. R. M. Sandoval, S. Canovas-Carrasco, A. Garcia-Sanchez, and J. Garcia-Haro, \Smart Usage of Multiple RAT in IoT-oriented 5G Networks: A Reinforcement Learning Approach," in 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), 2018, pp. 1-8.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Politécnica de Cartagen

    A Wi-Fi Signal-Based Human Activity Recognition Using High-Dimensional Factor Models

    Full text link
    Passive sensing techniques based on Wi-Fi signals have emerged as a promising technology in advanced wireless communication systems due to their widespread application and cost-effectiveness. However, the proliferation of low-cost Internet of Things (IoT) devices has led to dense network deployments, resulting in increased levels of noise and interference in Wi-Fi environments. This, in turn, leads to noisy and redundant Channel State Information (CSI) data. As a consequence, the accuracy of human activity recognition based on Wi-Fi signals is compromised. To address this issue, we propose a novel CSI data signal extraction method. We established a human activity recognition system based on the Intel 5300 network interface cards (NICs) and collected a dataset containing six categories of human activities. Using our approach, signals extracted from the CSI data serve as inputs to machine learning (ML) classification algorithms to evaluate classification performance. In comparison to ML methods based on Principal Component Analysis (PCA), our proposed High-Dimensional Factor Model (HDFM) method improves recognition accuracy by 6.8%
    • …
    corecore