7,573 research outputs found

    Pseudocodewords of Tanner graphs

    Full text link
    This papers presents a detailed analysis of pseudocodewords of Tanner graphs. Pseudocodewords arising on the iterative decoder's computation tree are distinguished from pseudocodewords arising on finite degree lifts. Lower bounds on the minimum pseudocodeword weight are presented for the BEC, BSC, and AWGN channel. Some structural properties of pseudocodewords are examined, and pseudocodewords and graph properties that are potentially problematic with min-sum iterative decoding are identified. An upper bound on the minimum degree lift needed to realize a particular irreducible lift-realizable pseudocodeword is given in terms of its maximal component, and it is shown that all irreducible lift-realizable pseudocodewords have components upper bounded by a finite value tt that is dependent on the graph structure. Examples and different Tanner graph representations of individual codes are examined and the resulting pseudocodeword distributions and iterative decoding performances are analyzed. The results obtained provide some insights in relating the structure of the Tanner graph to the pseudocodeword distribution and suggest ways of designing Tanner graphs with good minimum pseudocodeword weight.Comment: To appear in Nov. 2007 issue of IEEE Transactions on Information Theor

    List decoding - random coding exponents and expurgated exponents

    Full text link
    Some new results are derived concerning random coding error exponents and expurgated exponents for list decoding with a deterministic list size LL. Two asymptotic regimes are considered, the fixed list-size regime, where LL is fixed independently of the block length nn, and the exponential list-size, where LL grows exponentially with nn. We first derive a general upper bound on the list-decoding average error probability, which is suitable for both regimes. This bound leads to more specific bounds in the two regimes. In the fixed list-size regime, the bound is related to known bounds and we establish its exponential tightness. In the exponential list-size regime, we establish the achievability of the well known sphere packing lower bound. Relations to guessing exponents are also provided. An immediate byproduct of our analysis in both regimes is the universality of the maximum mutual information (MMI) list decoder in the error exponent sense. Finally, we consider expurgated bounds at low rates, both using Gallager's approach and the Csisz\'ar-K\"orner-Marton approach, which is, in general better (at least for L=1L=1). The latter expurgated bound, which involves the notion of {\it multi-information}, is also modified to apply to continuous alphabet channels, and in particular, to the Gaussian memoryless channel, where the expression of the expurgated bound becomes quite explicit.Comment: 28 pages; submitted to the IEEE Trans. on Information Theor

    Successive Integer-Forcing and its Sum-Rate Optimality

    Full text link
    Integer-forcing receivers generalize traditional linear receivers for the multiple-input multiple-output channel by decoding integer-linear combinations of the transmitted streams, rather then the streams themselves. Previous works have shown that the additional degree of freedom in choosing the integer coefficients enables this receiver to approach the performance of maximum-likelihood decoding in various scenarios. Nonetheless, even for the optimal choice of integer coefficients, the additive noise at the equalizer's output is still correlated. In this work we study a variant of integer-forcing, termed successive integer-forcing, that exploits these noise correlations to improve performance. This scheme is the integer-forcing counterpart of successive interference cancellation for traditional linear receivers. Similarly to the latter, we show that successive integer-forcing is capacity achieving when it is possible to optimize the rate allocation to the different streams. In comparison to standard successive interference cancellation receivers, the successive integer-forcing receiver offers more possibilities for capacity achieving rate tuples, and in particular, ones that are more balanced.Comment: A shorter version was submitted to the 51st Allerton Conferenc

    Communication for Generating Correlation: A Unifying Survey

    Full text link
    The task of manipulating correlated random variables in a distributed setting has received attention in the fields of both Information Theory and Computer Science. Often shared correlations can be converted, using a little amount of communication, into perfectly shared uniform random variables. Such perfect shared randomness, in turn, enables the solutions of many tasks. Even the reverse conversion of perfectly shared uniform randomness into variables with a desired form of correlation turns out to be insightful and technically useful. In this survey article, we describe progress-to-date on such problems and lay out pertinent measures, achievability results, limits of performance, and point to new directions.Comment: A review article to appear in IEEE Transactions on Information Theor

    An Achievable rate region for the 3−3-user interference channel based on coset codes

    Full text link
    We consider the problem of communication over a three user discrete memoryless interference channel (3−3-IC). The current known coding techniques for communicating over an arbitrary 3−3-IC are based on message splitting, superposition coding and binning using independent and identically distributed (iid) random codebooks. In this work, we propose a new ensemble of codes - partitioned coset codes (PCC) - that possess an appropriate mix of empirical and algebraic closure properties. We develop coding techniques that exploit algebraic closure property of PCC to enable efficient communication over 3−3-IC. We analyze the performance of the proposed coding technique to derive an achievable rate region for the general discrete 3−3-IC. Additive and non-additive examples are identified for which the derived achievable rate region is the capacity, and moreover, strictly larger than current known largest achievable rate regions based on iid random codebooks.Comment: New examples for which coset codes yield strictly larger achievable rate regions in comparison to those achievable using unstructured iid codes are identified. The issue of aligning interference at multiple receiver terminals addressed through an example. Revised submission to IEEE Trans. on Information Theor

    Outage Behavior of Discrete Memoryless Channels (DMCs) Under Channel Estimation Errors

    Full text link
    Communication systems are usually designed by assuming perfect channel state information (CSI). However, in many practical scenarios, only a noisy estimate of the channel is available, which may strongly differ from the true channel. This imperfect CSI scenario is addressed by introducing the notion of estimation-induced outage (EIO) capacity. We derive a single-letter characterization of the maximal EIO rate and prove an associated coding theorem and its strong converse for discrete memoryless channels (DMCs). The transmitter and the receiver rely on the channel estimate and the statistics of the estimate to construct codes that guarantee reliable communication with a certain outage probability. This ensures that in the non-outage case the transmission meets the target rate with small error probability, irrespective of the quality of the channel estimate. Applications of the EIO capacity to a single-antenna (non-ergodic) Ricean fading channel are considered. The EIO capacity for this case is compared to the EIO rates of a communication system in which the receiver decodes by using a mismatched ML decoder. The effects of rate-limited feedback to provide the transmitter with quantized CSI are also investigated.Comment: To appear in IEEE Transactions on Information Theory, Sep. 200

    Cross-layer Optimization for Ultra-reliable and Low-latency Radio Access Networks

    Full text link
    In this paper, we propose a framework for cross-layer optimization to ensure ultra-high reliability and ultra-low latency in radio access networks, where both transmission delay and queueing delay are considered. With short transmission time, the blocklength of channel codes is finite, and the Shannon Capacity cannot be used to characterize the maximal achievable rate with given transmission error probability. With randomly arrived packets, some packets may violate the queueing delay. Moreover, since the queueing delay is shorter than the channel coherence time in typical scenarios, the required transmit power to guarantee the queueing delay and transmission error probability will become unbounded even with spatial diversity. To ensure the required quality-of-service (QoS) with finite transmit power, a proactive packet dropping mechanism is introduced. Then, the overall packet loss probability includes transmission error probability, queueing delay violation probability, and packet dropping probability. We optimize the packet dropping policy, power allocation policy, and bandwidth allocation policy to minimize the transmit power under the QoS constraint. The optimal solution is obtained, which depends on both channel and queue state information. Simulation and numerical results validate our analysis, and show that setting packet loss probabilities equal is a near optimal solution.Comment: The manuscript has been accepted by IEEE transactions on wireless communication

    Symmetrised Characterisation of Noisy Quantum Processes

    Full text link
    A major goal of developing high-precision control of many-body quantum systems is to realise their potential as quantum computers. Probably the most significant obstacle in this direction is the problem of "decoherence": the extreme fragility of quantum systems to environmental noise and other control limitations. The theory of fault-tolerant quantum error correction has shown that quantum computation is possible even in the presence of decoherence provided that the noise affecting the quantum system satisfies certain well-defined theoretical conditions. However, existing methods for noise characterisation have become intractable already for the systems that are controlled in today's labs. In this paper we introduce a technique based on symmetrisation that enables direct experimental characterisation of key properties of the decoherence affecting a multi-body quantum system. Our method reduces the number of experiments required by existing methods from exponential to polynomial in the number of subsystems. We demonstrate the application of this technique to the optimisation of control over nuclear spins in the solid state.Comment: About 12 pages, 5 figure

    Joint Source-Channel Coding with Time-Varying Channel and Side-Information

    Full text link
    Transmission of a Gaussian source over a time-varying Gaussian channel is studied in the presence of time-varying correlated side information at the receiver. A block fading model is considered for both the channel and the side information, whose states are assumed to be known only at the receiver. The optimality of separate source and channel coding in terms of average end-to-end distortion is shown when the channel is static while the side information state follows a discrete or a continuous and quasiconcave distribution. When both the channel and side information states are time-varying, separate source and channel coding is suboptimal in general. A partially informed encoder lower bound is studied by providing the channel state information to the encoder. Several achievable transmission schemes are proposed based on uncoded transmission, separate source and channel coding, joint decoding as well as hybrid digital-analog transmission. Uncoded transmission is shown to be optimal for a class of continuous and quasiconcave side information state distributions, while the channel gain may have an arbitrary distribution. To the best of our knowledge, this is the first example in which the uncoded transmission achieves the optimal performance thanks to the time-varying nature of the states, while it is suboptimal in the static version of the same problem. Then, the optimal \emph{distortion exponent}, that quantifies the exponential decay rate of the expected distortion in the high SNR regime, is characterized for Nakagami distributed channel and side information states, and it is shown to be achieved by hybrid digital-analog and joint decoding schemes in certain cases, illustrating the suboptimality of pure digital or analog transmission in general.Comment: Submitted to IEEE Transactions on Information Theor

    Secure Diversity-Multiplexing Tradeoff of Zero-Forcing Transmit Scheme at Finite-SNR

    Full text link
    In this paper, we address the finite Signal-to-Noise Ratio (SNR) Diversity-Multiplexing Tradeoff (DMT) of the Multiple Input Multiple Output (MIMO) wiretap channel, where a Zero-Forcing (ZF) transmit scheme, that intends to send the secret information in the orthogonal space of the eavesdropper channel, is used. First, we introduce the secrecy multiplexing gain at finite-SNR that generalizes the definition at high-SNR. Then, we provide upper and lower bounds on the outage probability under secrecy constraint, from which secrecy diversity gain estimates of ZF are derived. Through asymptotic analysis, we show that the upper bound underestimates the secrecy diversity gain, whereas the lower bound is tight at high-SNR, and thus its related diversity gain estimate is equal to the actual asymptotic secrecy diversity gain of the MIMO wiretap channel.Comment: 10 pages and 5 figures. To appear IEEE Transactions on Communications 201
    • …
    corecore