33 research outputs found

    Reducibility of Gene Patterns in Ciliates using the Breakpoint Graph

    Full text link
    Gene assembly in ciliates is one of the most involved DNA processings going on in any organism. This process transforms one nucleus (the micronucleus) into another functionally different nucleus (the macronucleus). We continue the development of the theoretical models of gene assembly, and in particular we demonstrate the use of the concept of the breakpoint graph, known from another branch of DNA transformation research. More specifically: (1) we characterize the intermediate gene patterns that can occur during the transformation of a given micronuclear gene pattern to its macronuclear form; (2) we determine the number of applications of the loop recombination operation (the most basic of the three molecular operations that accomplish gene assembly) needed in this transformation; (3) we generalize previous results (and give elegant alternatives for some proofs) concerning characterizations of the micronuclear gene patterns that can be assembled using a specific subset of the three molecular operations.Comment: 30 pages, 13 figure

    Genome Structure Drives Patterns of Gene Family Evolution in Ciliates, a Case Study Using \u3ci\u3eChilodonella uncinata\u3c/i\u3e (Protista, Ciliophora, Phyllopharyngea)

    Get PDF
    In most lineages, diversity among gene family members results from gene duplication followed by sequence divergence. Because of the genome rearrangements during the development of somatic nuclei, gene family evolution in ciliates involves more complex processes. Previous work on the ciliate Chilodonella uncinata revealed that macronuclear β-tubulin gene family members are generated by alternative processing, in which germline regions are alternatively used in multiple macronuclear chromosomes. To further study genome evolution in this ciliate, we analyzed its transcriptome and found that (1) alternative processing is extensive among gene families; and (2) such gene families are likely to be C. uncinata specific. We characterized additional macronuclear and micronuclear copies of one candidate alternatively processed gene family-a protein kinase domain containing protein (PKc)-from two C. uncinata strains. Analysis of the PKc sequences reveals that (1) multiple PKc gene family members in the macronucleus share some identical regions flanked by divergent regions; and (2) the shared identical regions are processed from a single micronuclear chromosome. We discuss analogous processes in lineages across the eukaryotic tree of life to provide further insights on the impact of genome structure on gene family evolution in eukaryotes

    Sorting Permutations: Games, Genomes, and Cycles

    Get PDF
    Permutation sorting, one of the fundamental steps in pre-processing data for the efficient application of other algorithms, has a long history in mathematical research literature and has numerous applications. Two special-purpose sorting operations are considered in this paper: context directed swap, abbreviated cds, and context directed reversal, abbreviated cdr. These are special cases of sorting operations that were studied in prior work on permutation sorting. Moreover, cds and cdr have been postulated to model molecular sorting events that occur in the genome maintenance program of certain species of single-celled organisms called ciliates. This paper investigates mathematical aspects of these two sorting operations. The main result of this paper is a generalization of previously discovered characterizations of cds-sortability of a permutation. The combinatorial structure underlying this generalization suggests natural combinatorial two-player games. These games are the main mathematical innovation of this paper.Comment: to appear in Discrete Mathematics, Algorithms and Application

    Analysis of DIE5 and LIA5 reveals the importance of DNA repair in programmed DNA rearrangement of Tetrahymena thermophila

    Get PDF
    During its somatic nuclear differentiation, the single cell eukaryote Tetrahymena thermophila undergoes genome-wide programmed DNA rearrangement to eliminate transposon-like elements from its future soma. This process involves small RNA-directed heterochromatin formation followed by extensive nuclear reorganization to form subnuclear domains. While more has been known about small RNAs and heterochromatin, the mechanisms and players involved in the process of nuclear reorganization and the subsequent removal of transposon-like elements from the somatic genome are just starting to unravel. My thesis work centers on the study of two novel nuclear proteins Die5p: Chapter 2) and Lia5p: Chapter 3) and their roles in DNA rearrangement. These essential proteins function downstream of small RNA targeted heterochromatin establishment. While Lia5p is essential for nuclear reorganization to form distinct subnuclear structures, Die5p is a protein conserved across ciliate species and appears to be important for the integrity of the differentiating genome. Maintaining genome integrity during somatic nuclear differentiation has proven to be an active process. Similar to V(D)J recombination during mammalian B and T cell maturation, programmed DNA rearrangement in Tetrahymena induces global DNA damage that requires proper response and repair. Through the study of LIA5 and DIE5, we show that nuclear reorganization during Tetrahymena DNA rearrangement is intimately associated with the response to DNA damage. Furthermore, we implicate a chromodomain protein Pdd1 as a component of the DNA damage response system, thus providing evidence to support the link between heterochromatin and DNA repair during the reprogramming of Tetrahymena somatic genome

    Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell ‘Omics

    Get PDF
    The emergence of robust single-cell ‘omics techniques enables studies of uncultivable species, allowing for the (re)discovery of diverse genomic features. In this study, we combine single-cell genomics and transcriptomics to explore genome evolution in ciliates (a \u3e 1 Gy old clade). Analysis of the data resulting from these single-cell ‘omics approaches show: 1) the description of the ciliates in the class Karyorelictea as “primitive”is inaccurate because their somatic macronuclei contain loci of varying copy number (i.e., they have been processed by genome rearrangements from the zygotic nucleus); 2) gene-sized somatic chromosomes exist in the class Litostomatea, consistent with Balbiani’s (1890) observation of giant chromosomes in this lineage; and 3) gene scrambling exists in the underexplored Postciliodesmatophora (the classes Heterotrichea and Karyorelictea, abbreviated here as the Po-clade), one of two major clades of ciliates. Together these data highlight the complex evolutionary patterns underlying germline genome architectures in ciliates and provide a basis for further exploration of principles of genome evolution in diverse microbial lineages

    Spliced DNA sequences in the Paramecium germline: their properties and evolutionary potential

    Full text link
    Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation
    corecore