17,288 research outputs found

    Initialization of the Shooting Method via the Hamilton-Jacobi-Bellman Approach

    Get PDF
    The aim of this paper is to investigate from the numerical point of view the possibility of coupling the Hamilton-Jacobi-Bellman (HJB) equation and Pontryagin's Minimum Principle (PMP) to solve some control problems. A rough approximation of the value function computed by the HJB method is used to obtain an initial guess for the PMP method. The advantage of our approach over other initialization techniques (such as continuation or direct methods) is to provide an initial guess close to the global minimum. Numerical tests involving multiple minima, discontinuous control, singular arcs and state constraints are considered. The CPU time for the proposed method is less than four minutes up to dimension four, without code parallelization

    New results about multi-band uncertainty in Robust Optimization

    Full text link
    "The Price of Robustness" by Bertsimas and Sim represented a breakthrough in the development of a tractable robust counterpart of Linear Programming Problems. However, the central modeling assumption that the deviation band of each uncertain parameter is single may be too limitative in practice: experience indeed suggests that the deviations distribute also internally to the single band, so that getting a higher resolution by partitioning the band into multiple sub-bands seems advisable. The critical aim of our work is to close the knowledge gap about the adoption of a multi-band uncertainty set in Robust Optimization: a general definition and intensive theoretical study of a multi-band model are actually still missing. Our new developments have been also strongly inspired and encouraged by our industrial partners, which have been interested in getting a better modeling of arbitrary distributions, built on historical data of the uncertainty affecting the considered real-world problems. In this paper, we study the robust counterpart of a Linear Programming Problem with uncertain coefficient matrix, when a multi-band uncertainty set is considered. We first show that the robust counterpart corresponds to a compact LP formulation. Then we investigate the problem of separating cuts imposing robustness and we show that the separation can be efficiently operated by solving a min-cost flow problem. Finally, we test the performance of our new approach to Robust Optimization on realistic instances of a Wireless Network Design Problem subject to uncertainty.Comment: 15 pages. The present paper is a revised version of the one appeared in the Proceedings of SEA 201

    An Adversarial Interpretation of Information-Theoretic Bounded Rationality

    Full text link
    Recently, there has been a growing interest in modeling planning with information constraints. Accordingly, an agent maximizes a regularized expected utility known as the free energy, where the regularizer is given by the information divergence from a prior to a posterior policy. While this approach can be justified in various ways, including from statistical mechanics and information theory, it is still unclear how it relates to decision-making against adversarial environments. This connection has previously been suggested in work relating the free energy to risk-sensitive control and to extensive form games. Here, we show that a single-agent free energy optimization is equivalent to a game between the agent and an imaginary adversary. The adversary can, by paying an exponential penalty, generate costs that diminish the decision maker's payoffs. It turns out that the optimal strategy of the adversary consists in choosing costs so as to render the decision maker indifferent among its choices, which is a definining property of a Nash equilibrium, thus tightening the connection between free energy optimization and game theory.Comment: 7 pages, 4 figures. Proceedings of AAAI-1

    A Geometric Approach to Sound Source Localization from Time-Delay Estimates

    Get PDF
    This paper addresses the problem of sound-source localization from time-delay estimates using arbitrarily-shaped non-coplanar microphone arrays. A novel geometric formulation is proposed, together with a thorough algebraic analysis and a global optimization solver. The proposed model is thoroughly described and evaluated. The geometric analysis, stemming from the direct acoustic propagation model, leads to necessary and sufficient conditions for a set of time delays to correspond to a unique position in the source space. Such sets of time delays are referred to as feasible sets. We formally prove that every feasible set corresponds to exactly one position in the source space, whose value can be recovered using a closed-form localization mapping. Therefore we seek for the optimal feasible set of time delays given, as input, the received microphone signals. This time delay estimation problem is naturally cast into a programming task, constrained by the feasibility conditions derived from the geometric analysis. A global branch-and-bound optimization technique is proposed to solve the problem at hand, hence estimating the best set of feasible time delays and, subsequently, localizing the sound source. Extensive experiments with both simulated and real data are reported; we compare our methodology to four state-of-the-art techniques. This comparison clearly shows that the proposed method combined with the branch-and-bound algorithm outperforms existing methods. These in-depth geometric understanding, practical algorithms, and encouraging results, open several opportunities for future work.Comment: 13 pages, 2 figures, 3 table, journa

    The Master Equation for Large Population Equilibriums

    Get PDF
    We use a simple N-player stochastic game with idiosyncratic and common noises to introduce the concept of Master Equation originally proposed by Lions in his lectures at the Coll\`ege de France. Controlling the limit N tends to the infinity of the explicit solution of the N-player game, we highlight the stochastic nature of the limit distributions of the states of the players due to the fact that the random environment does not average out in the limit, and we recast the Mean Field Game (MFG) paradigm in a set of coupled Stochastic Partial Differential Equations (SPDEs). The first one is a forward stochastic Kolmogorov equation giving the evolution of the conditional distributions of the states of the players given the common noise. The second is a form of stochastic Hamilton Jacobi Bellman (HJB) equation providing the solution of the optimization problem when the flow of conditional distributions is given. Being highly coupled, the system reads as an infinite dimensional Forward Backward Stochastic Differential Equation (FBSDE). Uniqueness of a solution and its Markov property lead to the representation of the solution of the backward equation (i.e. the value function of the stochastic HJB equation) as a deterministic function of the solution of the forward Kolmogorov equation, function which is usually called the decoupling field of the FBSDE. The (infinite dimensional) PDE satisfied by this decoupling field is identified with the \textit{master equation}. We also show that this equation can be derived for other large populations equilibriums like those given by the optimal control of McKean-Vlasov stochastic differential equations. The paper is written more in the style of a review than a technical paper, and we spend more time and energy motivating and explaining the probabilistic interpretation of the Master Equation, than identifying the most general set of assumptions under which our claims are true
    • …
    corecore