276 research outputs found

    The patient burden of screening mammography recall.

    Get PDF
    OBJECTIVE: The aim of this article is to evaluate the burden of direct and indirect costs borne by recalled patients after a false positive screening mammogram. METHODS: Women aged 40-75 years undergoing screening mammography were identified from a U.S. commercial claims database. Women were required to have 12 months pre- and 6 months post-index enrollment to identify utilization and exclude patients with subsequent cancer diagnoses. Recall was defined as the use of diagnostic mammography or breast ultrasound during 6 months post-index. Descriptive statistics were presented for recalled and non-recalled patients; differences were compared using the chi square test. Out-of-pocket costs were totaled by utilization type and in aggregate for all recall utilization. RESULTS: Of 1,723,139 patients with a mammography screening that were not diagnosed with breast cancer, 259,028 (15.0%) were recalled. Significant demographic differences were observed between recalled and non-recalled patients. The strongest drivers of patient costs were image-guided biopsy (mean 351among11.8351 among 11.8% utilizing), diagnostic mammography (50; 80.1%), and ultrasound ($58; 65.7%), which accounted for 29.9%, 29.0%, and 27.5% of total recall costs, respectively. For many patients the entire cost of recall utilization was covered by the health plan. Total costs were substantially greater among patients with biopsy; one-third of all patients experienced multiple days of recall utilization. CONCLUSION: After a false positive screening mammography, recalled women incurred both direct medical costs and indirect time costs. The cost burden for women with employer-based insurance was dependent upon the type of utilization and extent of health plan coverage. Additional research and technologies are needed to address the entirety of the recall burden in diverse populations of women

    Personalized Decision Modeling for Intervention and Prevention of Cancers

    Get PDF
    Personalized medicine has been utilized in all stages of cancer care in recent years, including the prevention, diagnosis, treatment and follow-up. Since prevention and early intervention are particularly crucial in reducing cancer mortalities, personalizing the corresponding strategies and decisions so as to provide the most appropriate or optimal medical services for different patients can greatly improve the current cancer control practices. This dissertation research performs an in-depth exploration of personalized decision modeling of cancer intervention and prevention problems. We investigate the patient-specific screening and vaccination strategies for breast cancer and the cancers related to human papillomavirus (HPV), representatively. Three popular healthcare analytics techniques, Markov models, regression-based predictive models, and discrete-event simulation, are developed in the context of personalized cancer medicine. We discuss multiple possibilities of incorporating patient-specific risk into personalized cancer prevention strategies and showcase three practical examples. The first study builds a Markov decision process model to optimize biopsy referral decisions for women who receives abnormal breast cancer screening results. The second study directly optimizes the annual breast cancer screening using a regression-based adaptive decision model. The study also proposes a novel model selection method for logistic regression with a large number of candidate variables. The third study addresses the personalized HPV vaccination strategies and develops a hybrid model combining discrete-event simulation with regression-based risk estimation. Our findings suggest that personalized screening and vaccination benefit patients by maximizing life expectancies and minimizing the possibilities of dying from cancer. Preventive screening and vaccination programs for other cancers or diseases, which have clearly identified risk factors and measurable risk, may all benefit from patient-specific policies

    Design and Mining of Health Information Systems for Process and Patient Care Improvement

    Get PDF
    abstract: In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement. Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients. Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks. Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Inteligência Artificial em Radiologia: Do Processamento de Imagem ao Diagnóstico

    Get PDF
    The objective of this article is to present a view on the potential impact of Artificial Intelligence (AI) on processing medical images, in particular in relation to diagnostic. This topic is currently attracting major attention in both the medical and engineering communities, as demonstrated by the number of recent tutorials [1-3] and review articles [4-6] that address it, with large research hospitals, as well as engineering research centers contributing to the area. Furthermore, several large companies like General Electric (GE), IBM/Merge, Siemens, Philips or Agfa, as well as more specialized companies and startups are integrating AI into their medical imaging products. The evolution of GE in this respect is interesting. GE SmartSignal software was developed for industrial applications to identify impending equipment failures well before they happen. As written in the GE prospectus, with this added lead time, one can transform from reactive maintenance to a more proactive maintenance process, allowing the workforce to focus on fixing problems rather than looking for them. With this background experience from the industrial field, GE developed predictive analytics products for clinical imaging, that embodied the Predictive component of P4 medicine (predictive, personalized, preventive, participatory). Another interesting example is the Illumeo software from Philips that embeds adaptive intelligence, i. e. the capacity to improve its automatic reasoning process from its past experience, to automatically pop out related prior exams for radiology in face of a concrete situation. Actually, with its capacity to tackle massive amounts of data of different sorts (imaging data, patient exam reports, pathology reports, patient monitoring signals, data from implantable electrophysiology devices, and data from many other sources) AI is certainly able to yield a decisive contribution to all the components of P4 medicine. For instance, in the presence of a rare disease, AI methods have the capacity to review huge amounts of prior information when confronted to the patient clinical data

    Predicting diabetes-related hospitalizations based on electronic health records

    Full text link
    OBJECTIVE: To derive a predictive model to identify patients likely to be hospitalized during the following year due to complications attributed to Type II diabetes. METHODS: A variety of supervised machine learning classification methods were tested and a new method that discovers hidden patient clusters in the positive class (hospitalized) was developed while, at the same time, sparse linear support vector machine classifiers were derived to separate positive samples from the negative ones (non-hospitalized). The convergence of the new method was established and theoretical guarantees were proved on how the classifiers it produces generalize to a test set not seen during training. RESULTS: The methods were tested on a large set of patients from the Boston Medical Center - the largest safety net hospital in New England. It is found that our new joint clustering/classification method achieves an accuracy of 89% (measured in terms of area under the ROC Curve) and yields informative clusters which can help interpret the classification results, thus increasing the trust of physicians to the algorithmic output and providing some guidance towards preventive measures. While it is possible to increase accuracy to 92% with other methods, this comes with increased computational cost and lack of interpretability. The analysis shows that even a modest probability of preventive actions being effective (more than 19%) suffices to generate significant hospital care savings. CONCLUSIONS: Predictive models are proposed that can help avert hospitalizations, improve health outcomes and drastically reduce hospital expenditures. The scope for savings is significant as it has been estimated that in the USA alone, about $5.8 billion are spent each year on diabetes-related hospitalizations that could be prevented.Accepted manuscrip

    Annual Report, 2014-2015

    Get PDF

    Texture Analysis Platform for Imaging Biomarker Research

    Get PDF
    abstract: The rate of progress in improving survival of patients with solid tumors is slow due to late stage diagnosis and poor tumor characterization processes that fail to effectively reflect the nature of tumor before treatment or the subsequent change in its dynamics because of treatment. Further advancement of targeted therapies relies on advancements in biomarker research. In the context of solid tumors, bio-specimen samples such as biopsies serve as the main source of biomarkers used in the treatment and monitoring of cancer, even though biopsy samples are susceptible to sampling error and more importantly, are local and offer a narrow temporal scope. Because of its established role in cancer care and its non-invasive nature imaging offers the potential to complement the findings of cancer biology. Over the past decade, a compelling body of literature has emerged suggesting a more pivotal role for imaging in the diagnosis, prognosis, and monitoring of diseases. These advances have facilitated the rise of an emerging practice known as Radiomics: the extraction and analysis of large numbers of quantitative features from medical images to improve disease characterization and prediction of outcome. It has been suggested that radiomics can contribute to biomarker discovery by detecting imaging traits that are complementary or interchangeable with other markers. This thesis seeks further advancement of imaging biomarker discovery. This research unfolds over two aims: I) developing a comprehensive methodological pipeline for converting diagnostic imaging data into mineable sources of information, and II) investigating the utility of imaging data in clinical diagnostic applications. Four validation studies were conducted using the radiomics pipeline developed in aim I. These studies had the following goals: (1 distinguishing between benign and malignant head and neck lesions (2) differentiating benign and malignant breast cancers, (3) predicting the status of Human Papillomavirus in head and neck cancers, and (4) predicting neuropsychological performances as they relate to Alzheimer’s disease progression. The long-term objective of this thesis is to improve patient outcome and survival by facilitating incorporation of routine care imaging data into decision making processes.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A Review on the Role of Nano-Communication in Future Healthcare Systems: A Big Data Analytics Perspective

    Get PDF
    This paper presents a first-time review of the open literature focused on the significance of big data generated within nano-sensors and nano-communication networks intended for future healthcare and biomedical applications. It is aimed towards the development of modern smart healthcare systems enabled with P4, i.e. predictive, preventive, personalized and participatory capabilities to perform diagnostics, monitoring, and treatment. The analytical capabilities that can be produced from the substantial amount of data gathered in such networks will aid in exploiting the practical intelligence and learning capabilities that could be further integrated with conventional medical and health data leading to more efficient decision making. We have also proposed a big data analytics framework for gathering intelligence, form the healthcare big data, required by futuristic smart healthcare to address relevant problems and exploit possible opportunities in future applications. Finally, the open challenges, future directions for researchers in the evolving healthcare domain, are presented
    • …
    corecore