3,870 research outputs found

    Characterizing Forbidden Pairs for Hamiltonian Properties

    Get PDF
    https://digitalcommons.memphis.edu/speccoll-faudreerj/1207/thumbnail.jp

    Mechanisms of Manganese-Assisted Nonradiative Recombination in Cd(Mn)Se/Zn(Mn)Se Quantum Dots

    Full text link
    Mechanisms of nonradiative recombination of electron-hole complexes in Cd(Mn)Se/Zn(Mn)Se quantum dots accompanied by interconfigurational excitations of Mn2+^{2+} ions are analyzed within the framework of single electron model of deep {\it 3d}-levels in semiconductors. In addition to the mechanisms caused by Coulomb and exchange interactions, which are related because of the Pauli principle, another mechanism due to {\it sp-d} mixing is considered. It is shown that the Coulomb mechanism reduces to long-range dipole-dipole energy transfer from photoexcited quantum dots to Mn2+^{2+} ions. The recombination due to the Coulomb mechanism is allowed for any states of Mn2+^{2+} ions and {\it e-h} complexes. In contrast, short-range exchange and sp−d{\it sp-d} recombinations are subject to spin selection rules, which are the result of strong {\it lh-hh} splitting of hole states in quantum dots. Estimates show that efficiency of the {\it sp-d} mechanism can considerably exceed that of the Coulomb mechanism. The phonon-assisted recombination and processes involving upper excited states of Mn2+^{2+} ions are studied. The increase in PL intensity of an ensemble of quantum dots in a magnetic field perpendicular to the sample growth plane observed earlier is analyzed as a possible manifestation of the spin-dependent recombination.Comment: 14 pages, 2 figure

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least ∣V(G)∣/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least ∣V(G)∣|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph G′G' of GG isomorphic to SS and every maximal clique CC of G′G', every non-trivial component of G′−CG'-C contains a vertex of degree at least ∣V(G)∣/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    Forbidden subgraphs that imply Hamiltonian-connectedness

    Get PDF
    It is proven that if GG is a 33-connected claw-free graph which is also Z3Z_3-free (where Z3Z_3 is a triangle with a path of length 33 attached), P6P_6-free (where P6P_6 is a path with 66 vertices) or H1H_1-free (where H1H_1 consists of two disjoint triangles connected by an edge), then GG is Hamiltonian-connected. Also, examples will be described that determine a finite family of graphs L\cal{L} such that if a 3-connected graph being claw-free and LL-free implies GG is Hamiltonian-connected, then L∈LL\in\cal{L}. \u

    Two-photon cooling of a nonlinear quantum oscillator

    Full text link
    The cooling effects of a nonlinear quantum oscillator via its interaction with an artificial atom (qubit) are investigated. The quantum dissipations through the environmental reservoir of the nonlinear oscillator are included, taking into account the nonlinearity of the qubit-oscillator interaction. For appropriate bath temperatures and the resonator's quality factors, we demonstrate effective cooling below the thermal background. As the photon coherence functions behave differently for even and odd photon number states, we describe a mechanism distinguishing those states. The analytical formalism developed is general and can be applied to a wide range of systems.Comment: 11 pages, 2 figure

    Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates

    Get PDF
    We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms to realize the transition from an unstable to stable behavior and analyze specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime the system configuration do not depend on the model interaction parameters, and the population oscillation amplitude is related to the condensate-phase difference. This fact makes possible estimating the latter quantity, since the measure of the oscillating amplitudes is experimentally accessible.Comment: 25 pages, 12 figure
    • …
    corecore