237 research outputs found

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations

    Modeling dynamics of attention in social media with user efficiency

    Get PDF

    Influence of augmented humans in online interactions during voting events

    Full text link
    The advent of the digital era provided a fertile ground for the development of virtual societies, complex systems influencing real-world dynamics. Understanding online human behavior and its relevance beyond the digital boundaries is still an open challenge. Here we show that online social interactions during a massive voting event can be used to build an accurate map of real-world political parties and electoral ranks. We provide evidence that information flow and collective attention are often driven by a special class of highly influential users, that we name "augmented humans", who exploit thousands of automated agents, also known as bots, for enhancing their online influence. We show that augmented humans generate deep information cascades, to the same extent of news media and other broadcasters, while they uniformly infiltrate across the full range of identified groups. Digital augmentation represents the cyber-physical counterpart of the human desire to acquire power within social systems.Comment: 11 page

    Can Cascades be Predicted?

    Full text link
    On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest
    • …
    corecore