176 research outputs found

    When Does an Ensemble of Matrices with Randomly Scaled Rows Lose Rank?

    Full text link
    We consider the problem of determining rank loss conditions for a concatenation of full-rank matrices, such that each row of the composing matrices is scaled by a random coefficient. This problem has applications in wireless interference management and recommendation systems. We determine necessary and sufficient conditions for the design of each matrix, such that the random ensemble will almost surely lose rank by a certain amount. The result is proved by converting the problem to determining rank loss conditions for the union of some specific matroids, and then using tools from matroid and graph theories to derive the necessary and sufficient conditions. As an application, we discuss how this result can be applied to the problem of topological interference management, and characterize the linear symmetric degrees of freedom for a class of network topologies.Comment: submitted to IEEE Transactions on Information Theory; shorter version to appear at IEEE International Symposium on Information Theory (ISIT 2015

    Displaying blocking pairs in signed graphs

    Get PDF
    A signed graph is a pair (G, S) where G is a graph and S is a subset of the edges of G. A circuit of G is even (resp. odd) if it contains an even (resp. odd) number of edges of S. A blocking pair of (G, S) is a pair of vertices s, t such that every odd circuit intersects at least one of s or t. In this paper, we characterize when the blocking pairs of a signed graph can be represented by 2-cuts in an auxiliary graph. We discuss the relevance of this result to the problem of recognizing even cycle matroids and to the problem of characterizing signed graphs with no odd-K5 minor

    Extremal Problems in Matroid Connectivity

    Get PDF
    Matroid k-connectivity is typically defined in terms of a connectivity function. We can also say that a matroid is 2-connected if and only if for each pair of elements, there is a circuit containing both elements. Equivalently, a matroid is 2-connected if and only if each pair of elements is in a certain 2-element minor that is 2-connected. Similar results for higher connectivity had not been known. We determine a characterization of 3-connectivity that is based on the containment of small subsets in 3-connected minors from a given list of 3-connected matroids. Bixby’s Lemma is a well-known inductive tool in matroid theory that says that each element in a 3-connected matroid can be deleted or contracted to obtain a matroid that is 3-connected up to minimal 2-separations. We consider the binary matroids for which there is no element whose deletion and contraction are both 3-connected up to minimal 2-separations. In particular, we give a decomposition for such matroids to establish that any matroid of this type can be built from sequential matroids and matroids with many fans using a few natural operations. Wagner defined biconnectivity to translate connectivity in a bicircular matroid to certain connectivity conditions in its underlying graph. We extend a characterization of biconnectivity to higher connectivity. Using these graphic connectivity conditions, we call upon unavoidable minor results for graphs to find unavoidable minors for large 4-connected bicircular matroids

    Optimizing the Recency-Relevancy Trade-off in Online News Recommendations

    No full text

    The Contributions of Dominic Welsh to Matroid Theory

    Get PDF
    Dominic Welsh began writing papers in matroid theory nearly forty years ago. Since then, he has made numerous important contributions to the subject. This chapter reviews Dominic Welsh\u27s work in and influence on the development of matroid theory
    • …
    corecore