18,987 research outputs found

    Approximation of corner polyhedra with families of intersection cuts

    Full text link
    We study the problem of approximating the corner polyhedron using intersection cuts derived from families of lattice-free sets in Rn\mathbb{R}^n. In particular, we look at the problem of characterizing families that approximate the corner polyhedron up to a constant factor, which depends only on nn and not the data or dimension of the corner polyhedron. The literature already contains several results in this direction. In this paper, we use the maximum number of facets of lattice-free sets in a family as a measure of its complexity and precisely characterize the level of complexity of a family required for constant factor approximations. As one of the main results, we show that, for each natural number nn, a corner polyhedron with nn basic integer variables and an arbitrary number of continuous non-basic variables is approximated up to a constant factor by intersection cuts from lattice-free sets with at most ii facets if i>2n−1i> 2^{n-1} and that no such approximation is possible if i≤2n−1i \leq 2^{n-1}. When the approximation factor is allowed to depend on the denominator of the fractional vertex of the linear relaxation of the corner polyhedron, we show that the threshold is i>ni > n versus i≤ni \leq n. The tools introduced for proving such results are of independent interest for studying intersection cuts
    • …
    corecore