4,580 research outputs found

    A half century of progress towards a unified neural theory of mind and brain with applications to autonomous adaptive agents and mental disorders

    Full text link
    Invited article for the book Artificial Intelligence in the Age of Neural Networks and Brain Computing R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, Eds. Cambridge, MA: Academic PressThis article surveys some of the main design principles, mechanisms, circuits, and architectures that have been discovered during a half century of systematic research aimed at developing a unified theory that links mind and brain, and shows how psychological functions arise as emergent properties of brain mechanisms. The article describes a theoretical method that has enabled such a theory to be developed in stages by carrying out a kind of conceptual evolution. It also describes revolutionary computational paradigms like Complementary Computing and Laminar Computing that constrain the kind of unified theory that can describe the autonomous adaptive intelligence that emerges from advanced brains. Adaptive Resonance Theory, or ART, is one of the core models that has been discovered in this way. ART proposes how advanced brains learn to attend, recognize, and predict objects and events in a changing world that is filled with unexpected events. ART is not, however, a “theory of everything” if only because, due to Complementary Computing, different matching and learning laws tend to support perception and cognition on the one hand, and spatial representation and action on the other. The article mentions why a theory of this kind may be useful in the design of autonomous adaptive agents in engineering and technology. It also notes how the theory has led to new mechanistic insights about mental disorders such as autism, medial temporal amnesia, Alzheimer’s disease, and schizophrenia, along with mechanistically informed proposals about how their symptoms may be ameliorated

    Attentive monitoring of multiple video streams driven by a Bayesian foraging strategy

    Full text link
    In this paper we shall consider the problem of deploying attention to subsets of the video streams for collating the most relevant data and information of interest related to a given task. We formalize this monitoring problem as a foraging problem. We propose a probabilistic framework to model observer's attentive behavior as the behavior of a forager. The forager, moment to moment, focuses its attention on the most informative stream/camera, detects interesting objects or activities, or switches to a more profitable stream. The approach proposed here is suitable to be exploited for multi-stream video summarization. Meanwhile, it can serve as a preliminary step for more sophisticated video surveillance, e.g. activity and behavior analysis. Experimental results achieved on the UCR Videoweb Activities Dataset, a publicly available dataset, are presented to illustrate the utility of the proposed technique.Comment: Accepted to IEEE Transactions on Image Processin

    Consciousness CLEARS the Mind

    Full text link
    A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Practopoiesis: Or how life fosters a mind

    Get PDF
    The mind is a biological phenomenon. Thus, biological principles of organization should also be the principles underlying mental operations. Practopoiesis states that the key for achieving intelligence through adaptation is an arrangement in which mechanisms laying a lower level of organization, by their operations and interaction with the environment, enable creation of mechanisms lying at a higher level of organization. When such an organizational advance of a system occurs, it is called a traverse. A case of traverse is when plasticity mechanisms (at a lower level of organization), by their operations, create a neural network anatomy (at a higher level of organization). Another case is the actual production of behavior by that network, whereby the mechanisms of neuronal activity operate to create motor actions. Practopoietic theory explains why the adaptability of a system increases with each increase in the number of traverses. With a larger number of traverses, a system can be relatively small and yet, produce a higher degree of adaptive/intelligent behavior than a system with a lower number of traverses. The present analyses indicate that the two well-known traverses-neural plasticity and neural activity-are not sufficient to explain human mental capabilities. At least one additional traverse is needed, which is named anapoiesis for its contribution in reconstructing knowledge e.g., from long-term memory into working memory. The conclusions bear implications for brain theory, the mind-body explanatory gap, and developments of artificial intelligence technologies.Comment: Revised version in response to reviewer comment

    Designing Attentive Information Dashboards

    Get PDF
    Information dashboards are a critical capability in contemporary business intelligence and analytics systems. Despite their strong potential to support better decision-making, the massive amount of information they provide challenges users performing data exploration tasks. Accordingly, dashboard users face difficulties in managing their limited attentional resources when processing the presented information on dashboards. Also, studies have shown that the amount of concentrated time humans can spend on a task has dramatically decreased in recent years; thus, there is a need for designing user interfaces that support users attention management. In this design science research project, we propose attentive information dashboards that provide individualized visual attention feedback (VAF) as an innovative artifact to solve this problem. We articulate theoretically grounded design principles and instantiate a software artifact leveraging users eye movement data in real time to provide individualized VAF. We evaluated the instantiated artifact in a controlled lab experiment with 92 participants. The results from analyzing users eye movement after receiving individualized VAF reveal that our proposed design has a positive effect on users attentional resource allocation, attention shift rate, and attentional resource management. We contribute a system architecture for attentive information dashboards that support data exploration and two theoretically grounded design principles that provide prescriptive knowledge on how to provide individualized VAF. Practitioners can leverage the prescriptive knowledge derived from our research to design innovative systems that support users information processing by managing their limited attentional resources

    Modelling an intelligent interaction system for increasing the level of attention

    Get PDF
    Learning activities using technologies is one of the common education methods. Its advantages allow that students can learn with concepts more practical’s. However in this environment not all the students can be attentive. In this research an Ambient Intelligent System has been designed using biometrics behaviors for detecting learner inattentiveness. The learning attentiveness of a student can be determined precisely and the teacher has access to these results and might improve news strategies.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Assess and enhancing attention in learning activities

    Get PDF
    The rapid progress of technologies has enabled the development of innovative environment in learning activities when the student used computer devices with access to Internet. The goal of this paper is to propose an ambient intelligent (AmI) system, directed at the teacher that indicates the level of attention of the students in the class when it requires the use of the computer connected to the Internet. This AmI system captures, measures, and supervises the interaction of each student with the computer (or laptop) and indicates the level of attention of students in the activities proposed by the teacher. When the teacher has big class, he/she can visualize in real time the level of engagement of the students in the proposed activities and act accordingly when necessary. Measurements of attention level are obtained by a proposed model, and user for training a decision support system that in a real scenario makes recommendations for the teachers so as to prevent undesirable behaviour and change the learning styles.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Quantifying the effects of learning styles on attention

    Get PDF
    Monitoring and managing attention in the classroom is nowadays an important aspect where the level of learner’s attention affects learning results. When students are using devices connected to the Internet in learning activities in which they send and received notifications, beeps, and vibrations and blinking messages, the ability to focus becomes increasingly important. This is true in many different domains, from the classroom to the workplace. This paper deals with the issue of attention monitoring, with the aim of providing a non-intrusive, reliable and easy tool that can be used freely in schools or organizations, without changing or interfering with the established working routines. Specifically, we look at desk students in learning activities, in which the student spends long time interacting with the computer.This work has been supported by COMPETE: POCI-01-0145- FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Cripping Feminist Technoscience

    Get PDF
    In feminist technoscience studies (FTS), the term technoscience conveys that scientific knowledge and technological worlds are active constructions of entangled material, social, and historical agents. Feminist analyses of assisted reproduction, environmental harm, digital media, and cyborg bodies constitute some of the work of FTS, a close sibling of the new materialisms and post-positivist feminist philosophies of science. Technoscience is also a familiar object of inquiry for scholars of critical disability studies (DS). DS’s historical, sociological, and philosophical engagements with medicine, the politics of design, selective reproduction, fictional cyborgs, and technology users make clear that DS and FTS scholars share at least some understandings of technoscience. However, while feminist disability studies has emerged as a field containing hybrid developments and reciprocal critical exchanges between feminist and disability theories of embodiment, knowledge, and ethics (Garland-Thomson 2011; Tremain 2013), a field of feminist disability technoscience studies is only on the cusp of emergence
    corecore