31 research outputs found

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Compatible 4-Holes in Point Sets

    Full text link
    Counting interior-disjoint empty convex polygons in a point set is a typical Erd\H{o}s-Szekeres-type problem. We study this problem for 4-gons. Let PP be a set of nn points in the plane and in general position. A subset QQ of PP, with four points, is called a 44-hole in PP if QQ is in convex position and its convex hull does not contain any point of PP in its interior. Two 4-holes in PP are compatible if their interiors are disjoint. We show that PP contains at least ⌊5n/11⌋−1\lfloor 5n/11\rfloor {-} 1 pairwise compatible 4-holes. This improves the lower bound of 2⌊(n−2)/5⌋2\lfloor(n-2)/5\rfloor which is implied by a result of Sakai and Urrutia (2007).Comment: 17 page

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem

    Which point sets admit a k-angulation?

    Get PDF
    For k≥3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V (G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k² points, the only obstructions are those that follow from Euler’s formula

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    Advances in Discrete Differential Geometry

    Get PDF
    Differential Geometr
    corecore