350 research outputs found

    Optimizing soft error reliability through scheduling on heterogeneous multicore processors

    Get PDF
    Reliability to soft errors is an increasingly important issue as technology continues to shrink. In this paper, we show that applications exhibit different reliability characteristics on big, high-performance cores versus small, power-efficient cores, and that there is significant opportunity to improve system reliability through reliability-aware scheduling on heterogeneous multicore processors. We monitor the reliability characteristics of all running applications, and dynamically schedule applications to the different core types in a heterogeneous multicore to maximize system reliability. Reliability-aware scheduling improves reliability by 25.4 percent on average (and up to 60.2 percent) compared to performance-optimized scheduling on a heterogeneous multicore processor with two big cores and two small cores, while degrading performance by 6.3 percent only. We also introduce a novel system-level reliability metric for multiprogram workloads on (heterogeneous) multicores. We provide a trade-off analysis among reliability-, power- and performance-optimized scheduling, and evaluate reliability-aware scheduling under performance constraints and for unprotected L1 caches. In addition, we also extend our scheduling mechanisms to multithreaded programs. The hardware cost in support of our reliability-aware scheduler is limited to 296 bytes per core

    Doctor of Philosophy

    Get PDF
    dissertationWith the explosion of chip transistor counts, the semiconductor industry has struggled with ways to continue scaling computing performance in line with historical trends. In recent years, the de facto solution to utilize excess transistors has been to increase the size of the on-chip data cache, allowing fast access to an increased portion of main memory. These large caches allowed the continued scaling of single thread performance, which had not yet reached the limit of instruction level parallelism (ILP). As we approach the potential limits of parallelism within a single threaded application, new approaches such as chip multiprocessors (CMP) have become popular for scaling performance utilizing thread level parallelism (TLP). This dissertation identifies the operating system as a ubiquitous area where single threaded performance and multithreaded performance have often been ignored by computer architects. We propose that novel hardware and OS co-design has the potential to significantly improve current chip multiprocessor designs, enabling increased performance and improved power efficiency. We show that the operating system contributes a nontrivial overhead to even the most computationally intense workloads and that this OS contribution grows to a significant fraction of total instructions when executing several common applications found in the datacenter. We demonstrate that architectural improvements have had little to no effect on the performance of the OS over the last 15 years, leaving ample room for improvements. We specifically consider three potential solutions to improve OS execution on modern processors. First, we consider the potential of a separate operating system processor (OSP) operating concurrently with general purpose processors (GPP) in a chip multiprocessor organization, with several specialized structures acting as efficient conduits between these processors. Second, we consider the potential of segregating existing caching structures to decrease cache interference between the OS and application. Third, we propose that there are components within the OS itself that should be refactored to be both multithreaded and cache topology aware, which in turn, improves the performance and scalability of many-threaded applications

    Using Locality and Interleaving Information to Improve Shared Cache Performance

    Get PDF
    The cache interference is found to play a critical role in optimizing cache allocation among concurrent threads for shared cache. Conventional LRU policy usually works well for low interference workloads, while high cache interference among threads demands explicit allocation regulation, such as cache partitioning. Cache interference is shown to be tied to inter-thread memory reference interleaving granularity: high interference is caused by ne-grain interleaving while low interference is caused coarse-grain interleaving. Proling of real multi-program workloads shows that cache set mapping and temporal phase result in the variation of interleaving granularity. When memory references from dierent threads map to disjoint cache sets, or they occur in distinct time windows, they tend to cause little interference due to coarse-grain interleaving. The interleaving granularity measured by runlength in workloads is found to correlate with the preference of cache management policy: ne-grain interleaving workloads perform better with cache partitioning, and coarse-grain interleaving workloads perform better with LRU. Most existing shared cache management techniques are based on working set locality analysis. This dissertation studies the shared cache performance by taking both locality and interleaving information into consideration. Oracle algorithm which provides theoretical best performance is investigated to provide insight into how to design a better practical policy. Proling and analysis of Oracle algorithm lead to the proposal of probabilistic replacement (PR), a novel cache allocation policy. With aggressor threads information learned on-line, PR evicts the bad locality blocks of aggressor threads probabilistically while preserving good locality blocks of non-aggressor threads. PR is shown to be able to adapt to the different interleaving granularities in different sets over time. Its flexibility in tuning eviction probability also improves fairness among thread performance. Evaluation indicates that PR outperforms LRU, UCP, and ideal cache partitioning at moderate hardware cost. For single program cache management, this dissertation also proposes a novel technique: reuse distance last touch predictor (RD-LTP). RD-LTP is able to capture reuse distance information, which represents the intrinsic memory reference pattern. Based on this improved LT predictor, an MRU LT eviction policy is developed to select the right victim at the presence of incorrect LT prediction. In addition to LT predictor, another predictor: reuse distance predictors (RDPs) is proposed, which is able to predict actual reuse distance values. Compared to various existing cache management techniques, these two novel predictors deliver higher cache performance with higher prediction coverage and accuracy at moderate hardware cost

    Scaling Distributed Cache Hierarchies through Computation and Data Co-Scheduling

    Get PDF
    Cache hierarchies are increasingly non-uniform, so for systems to scale efficiently, data must be close to the threads that use it. Moreover, cache capacity is limited and contended among threads, introducing complex capacity/latency tradeoffs. Prior NUCA schemes have focused on managing data to reduce access latency, but have ignored thread placement; and applying prior NUMA thread placement schemes to NUCA is inefficient, as capacity, not bandwidth, is the main constraint. We present CDCS, a technique to jointly place threads and data in multicores with distributed shared caches. We develop novel monitoring hardware that enables fine-grained space allocation on large caches, and data movement support to allow frequent full-chip reconfigurations. On a 64-core system, CDCS outperforms an S-NUCA LLC by 46% on average (up to 76%) in weighted speedup and saves 36% of system energy. CDCS also outperforms state-of-the-art NUCA schemes under different thread scheduling policies.National Science Foundation (U.S.) (Grant CCF-1318384)Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Jacobs Presidential Fellowship)United States. Defense Advanced Research Projects Agency (PERFECT Contract HR0011-13-2-0005

    SCALO: Scalability-Aware Parallelism Orchestration for Multi-Threaded Workloads

    Get PDF
    This article contributes a solution to orchestrate concurrent application execution to increase throughput. SCALO monitors co-executing applications at runtime to evaluate their scalability

    Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU

    Get PDF
    Enhancing the match between software executions and hardware features is key to computing efficiency. The match is a continuously evolving and challenging problem. This dissertation focuses on the development of programming system support for exploiting two key features of modern hardware development: the massive parallelism of emerging computational accelerators such as Graphic Processing Units (GPU), and the non-uniformity of cache sharing in modern multicore processors. They are respectively driven by the important role of accelerators in today\u27s general-purpose computing and the ultimate importance of memory performance. This dissertation particularly concentrates on optimizing control flows and memory references, at both compilation and execution time, to tap into the full potential of pure software solutions in taking advantage of the two key hardware features.;Conditional branches cause divergences in program control flows, which may result in serious performance degradation on massively data-parallel GPU architectures with Single Instruction Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force computing units to stay idle for a substantial time, throttling system throughput by orders of magnitude. This dissertation provides an extensive exploration of the solution to this problem and presents program level transformations based upon two fundamental techniques --- thread relocation and data relocation. These two optimizations provide fundamental support for swapping jobs among threads so that the control flow paths of threads converge within every SIMD thread group.;In memory performance, this dissertation concentrates on two aspects: the influence of nonuniform sharing on multithreading applications, and the optimization of irregular memory references on GPUs. In shared cache multicore chips, interactions among threads are complicated due to the interplay of cache contention and synergistic prefetching. This dissertation presents the first systematic study on the influence of non-uniform shared cache on contemporary parallel programs, reveals the mismatch between the software development and underlying cache sharing hierarchies, and further demonstrates it by proposing and applying cache-sharing-aware data transformations that bring significant performance improvement. For the second aspect, the efficiency of GPU accelerators is sensitive to irregular memory references, which refer to the memory references whose access patterns remain unknown until execution time (e.g., A[P[i]]). The root causes of the irregular memory reference problem are similar to that of the control flow problem, while in a more general and complex form. I developed a framework, named G-Streamline, as a unified software solution to dynamic irregularities in GPU computing. It treats both types of irregularities at the same time in a holistic fashion, maximizing the whole-program performance by resolving conflicts among optimizations

    Improving the effective use of multithreaded architectures : implications on compilation, thread assignment, and timing analysis

    Get PDF
    This thesis presents cross-domain approaches that improve the effective use of multithreaded architectures. The contributions of the thesis can be classified in three groups. First, we propose several methods for thread assignment of network applications running in multithreaded network servers. Second, we analyze the problem of graph partitioning that is a part of the compilation process of multithreaded streaming applications. Finally, we present a method that improves the measurement-based timing analysis of multithreaded architectures used in time-critical environments. The following sections summarize each of the contributions. (1) Thread assignment on multithreaded processors: State-of-the-art multithreaded processors have different level of resource sharing (e.g. between thread running on the same core and globally shared resources). Thus, the way that threads of a given workload are assigned to processors' hardware contexts determines which resources the threads share, which, in turn, may significantly affect the system performance. In this thesis, we demonstrate the importance of thread assignment for network applications running in multithreaded servers. We also present TSBSched and BlackBox scheduler, methods for thread assignment of multithreaded network applications running on processors with several levels of resource sharing. Finally, we propose a statistical approach to the thread assignment problem. In particular, we show that running a sample of several hundred or several thousand random thread assignments is sufficient to capture at least one out of 1% of the best-performing assignments with a very high probability. We also describe the method that estimates the optimal system performance for given workload. We successfull y applied TSBSched, BlackBox scheduler, and the presented statistical approach to a case study of thread assignment of multithreaded network applications running on the UltraSPARC T2 processor. (2) Kernel partitioning of streaming applications: An important step in compiling a stream program to multiple processors is kernel partitioning. Finding an optimal kernel partition is, however, an intractable problem. We propose a statistical approach to the kernel partitioning problem. We describe a method that statistically estimates the performance of the optimal kernel partition. We demonstrate that the sampling method is an important part of the analysis, and that not all methods that generate random samples provide good results. We also show that random sampling on its own can be used to find a good kernel partition, and that it could be an alternative to heuristics-based approaches. The presented statistical method is applied successfully to the benchmarks included in the StreamIt 2.1.1 suite. (3) Multithreaded processors in time-critical environments: Despite the benefits that multithreaded commercial-of-the-shelf (MT COTS) processors may offer in embedded real-time systems, the time-critical market has not yet embraced a shift toward these architectures. The main challenge with MT COTS architectures is the difficulty when predicting the execution time of concurrently-running (co-running) time-critical tasks. Providing a timing analysis for real industrial applications running on MT COTS processors becomes extremely difficult because the execution time of a task, and hence its worst-case execution time (WCET) depends on the interference with co-running tasks in shared processor resources. We show that the measurement-based timing analysis used for single-threaded processors cannot be directly extended for MT COTS architectures. Also, we propose a methodology that quantifies the slowdown that a task may experience because of collision with co-running tasks in shared resources of MT COTS processor. The methodology is applied to a case study in which different time-critical applications were executed on several MT COTS multithreaded processors
    • …
    corecore