236 research outputs found

    Characterizing and Detecting Loops in n-Dimensional Discrete Toric Spaces

    Get PDF
    International audienc

    General phase spaces: from discrete variables to rotor and continuum limits

    Full text link
    We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.Comment: 22 pages, 3 figures; part of special issue on Rabi model; v2 minor change

    Symmetry protected topological order at nonzero temperature

    Get PDF
    We address the question of whether symmetry-protected topological (SPT) order can persist at nonzero temperature, with a focus on understanding the thermal stability of several models studied in the theory of quantum computation. We present three results in this direction. First, we prove that nontrivial SPT order protected by a global on-site symmetry cannot persist at nonzero temperature, demonstrating that several quantum computational structures protected by such on-site symmetries are not thermally stable. Second, we prove that the 3D cluster state model used in the formulation of topological measurement-based quantum computation possesses a nontrivial SPT-ordered thermal phase when protected by a global generalized (1-form) symmetry. The SPT order in this model is detected by long-range localizable entanglement in the thermal state, which compares with related results characterizing SPT order at zero temperature in spin chains using localizable entanglement as an order parameter. Our third result is to demonstrate that the high error tolerance of this 3D cluster state model for quantum computation, even without a protecting symmetry, can be understood as an application of quantum error correction to effectively enforce a 1-form symmetry.Comment: 42 pages, 10 figures, comments welcome; v2 published versio

    Entanglement order parameters and critical behavior for topological phase transitions and beyond

    Full text link
    Topological phases are exotic quantum phases which are lacking the characterization in terms of order parameters. In this paper, we develop a unified framework based on variational iPEPS for the quantitative study of both topological and conventional phase transitions through entanglement order parameters. To this end, we employ tensor networks with suitable physical and/or entanglement symmetries encoded, and allow for order parameters detecting the behavior of any of those symmetries, both physical and entanglement ones. First, this gives rise to entanglement-based order parameters for topological phases. These topological order parameters allow to quantitatively probe topological phase transitions and to identify their universal behavior. We apply our framework to the study of the Toric Code model in different magnetic fields, which in some cases maps to the (2+1)D Ising model. We identify 3D Ising critical exponents for the entire transition, consistent with those special cases and general belief. However, we moreover find an unknown critical exponent beta=0.021. We then apply our framework of entanglement order parameters to conventional phase transitions. We construct a novel type of disorder operator (or disorder parameter), which is non-zero in the disordered phase and measures the response of the wavefunction to a symmetry twist in the entanglement. We numerically evaluate this disorder operator for the (2+1)D transverse field Ising model, where we again recover a critical exponent hitherto unknown in the model, beta=0.024, consistent with the findings for the Toric Code. This shows that entanglement order parameters can provide additional means of characterizing the universal data both at topological and conventional phase transitions, and altogether demonstrates the power of this framework to identify the universal data underlying the transition.Comment: v2: Significantly extended; added new Section IV with construction and study of disorder parameters for conventional phase transition

    Tensor Network Methods for Quantum Phases

    Get PDF
    The physics that emerges when large numbers of particles interact can be complex and exotic. The collective behaviour may not re ect the underlying constituents, for example fermionic quasiparticles can emerge from models of interacting bosons. Due to this emergent complexity, manybody phenomena can be very challenging to study, but also very useful. A theoretical understanding of such systems is important for robust quantum information storage and processing. The emergent, macroscopic physics can be classi ed using the idea of a quantum phase. All models within a given phase exhibit similar low-energy emergent physics, which is distinct from that displayed by models in di erent phases. In this thesis, we utilise tensor networks to study many-body systems in a range of quantum phases. These include topologically ordered phases, gapless symmetry-protected phases, and symmetry-enriched topological phases

    Topological Quantum Computation and Protected Gates

    Get PDF
    This thesis serves to give a mathematical overview of topological quantum computation and to apply the theory to characterize desirable fault-tolerant operations called protected gates. Topological quantum computation is a novel paradigm for quantum computation which seeks to harness certain exotic quantum systems known as topological phases of matter that exhibit unique physical phenomena such as the manifestation of quasiparticle excitations called anyons. The low energy effective field theories of these systems can be expressed by certain topological quantum field theories, which in turn are described in terms of unitary modular tensor categories that capture the essential properties of a topological phase of matter and its corresponding anyon model. An overview of the relevant category theoretic concepts is given, and the axioms of a unitary modular tensor category are made explicit. A topological quantum field theory is then defined and used to describe topological quantum computation. Having developed the necessary theoretical background, the theory is then applied to characterize protected gates. The main result is a no-go theorem which states that, for any model, the set of protected gates is finite, and hence, cannot be used to do universal quantum computation using protected gates alone

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil
    • …
    corecore