277 research outputs found

    Self-assembly Of Amyloid Aggregates Simulated With Molecular Dynamics

    Get PDF
    Amyloids are highly ordered cross-β sheet aggregates that are associated with many diseases such as Alzheimer‟s, type II diabetes and prion diseases. Recently a progress has been made in structure elucidation, environmental effects and thermodynamic properties of amyloid aggregates. However, detailed understanding of how mutation, packing polymorphism and small organic molecules influence amyloid structure and dynamics is still lacking. Atomistic modeling of these phenomena with molecular dynamics (MD) simulations holds a great promise to bridge this gap. This Thesis describes the results of MD simulations, which provide insight into the effects of mutation, packing polymorphism and molecular inhibitors on amyloid peptides aggregation. Chapter 1 discusses the structure of amyloid peptides, diseases associated with amyloid aggregation, mechanism of aggregation and strategies to treat amyloid diseases. Chapter 2 describes the basic principles of molecular dynamic simulation and methods of trajectory analysis used in the Thesis. Chapter 3 presents the results of the study of several all-atom molecular dynamics simulations with explicit solvent, starting from the crystalline fragments of two to ten monomers each. Three different hexapeptides and their analogs produced with single glycine replacement were investigated to study the structural stability, aggregation behavior and thermodynamics of the amyloid oligomers. Chapter 4 presents multiple molecular dynamics (MD) simulation of a pair polymorphic form of five short segments of amyloid peptide. Chapter 5 describes MD study of single-layer oligomers of the full-length insulin with a goal to identify the structural elements that are important for insulin amyloid stability, and to suggest single glycine mutants that may improve formulation. Chapter 6 presents the investigation of the mechanism of the interaction of polyphenols molecules with the protofibrils formed by an amyloidogenic hexapeptide fragment (VQIVYK) of Tau peptide by molecular dynamics iii simulations in explicit solvent. We analyzed the trajectories of the large (7×4) aggregate with and without the polyphenols. Our MD simulations for both the short and full length amyloids revealed adding strands enhances the internal stability of wildtype aggregates. The degree of structural similarity between the oligomers in simulation and the fibril models constructed based on experimental data may explain why adding oligomers shortens the experimentally observed nucleation lag phase of amyloid aggregation. The MM-PBSA free energy calculation revealed nonpolar components of the free energy is more favorable while electrostatic solvation is unfavorable for the sheet to sheet interaction. This explains the acceleration of aggregation by adding nonpolar co-solvents (methanol, trifluoroethanol, and hexafluoroisopropanol). Free energy decomposition shows residues situated at the interface were found to make favorable contribution to the peptide -peptide association. The results from the simulations might provide both the valuable insight for amyloid aggregation as well as assist in inhibitor design efforts. First, the simulation of the single glycine mutants at the steric zipper of the short segments of various pathological peptides indicates the intersheet steric zipper is important for amyloid stability. Mutation of the side chains at the dry steric zipper disrupts the sheet to sheet packing, making the aggregation unstable. Thus, designing new peptidomimetic inhibitors able to prevent the fibril formation based on the steric zipper motif of the oligomers, similar to the ones examined in this study may become a viable therapeutic strategy. The various steric zipper microcrystal structures of short amyloid segments could be used as a template to design aggregation inhibitor that can block growth of the aggregates. Modification of the steric zipper structure (structure based design) with a single amino acid changes, shuffling the sequences, N- methylation of peptide amide bonds to suppress hydrogen iv bonding ability of NH groups or replacement with D amino acid sequence that interact with the parent steric zipper could be used in computational search for the new inhibitors. Second, the polyphenols were found to interact with performed oligomer through hydrogen bonding and induce conformational change creating an altered aggregate. The conformational change disrupts the intermolecular amyloid contact remodeling the amyloid aggregate. The recently reported microcrystal structure of short segments of amyloid peptides with small organic molecules could serve as a pharamcophore for virtual screening of aggregation inhibitor using combined docking and MD simulation with possible enhancement of lead enrichment. Finally, our MD simulation of short segments of amyloids with steric zipper polymorphism showed the stability depends on both sequence and packing arrangements. The hydrophilic polar GNNQQNY and NNQNTF with interface containing large polar and/or aromatic side chains (Q/N) are more stable than steric zipper interfaces made of small or hydrophobic residues (SSTNVG, VQIVYK, and MVGGVV). The larger sheet to sheet interface of the dry steric zipper through polar Q/N rich side chains was found to holds the sheets together better than non Q/N rich short amyloid segments. The packing polymorphism could influence the structure based design of aggregation inhibitor and a combination of different aggregation inhibitors might be required to bind to various morphologic forms of the amyloid peptides

    Protein Aggregates

    Get PDF

    Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features.

    Get PDF
    Recently, several short peptides have been shown to self-assemble into amyloid fibrils with generic cross-beta spines, so-called steric zippers, suggesting common underlying structural features and aggregation mechanisms. Understanding these mechanisms is a prerequisite,for designing fibril-binding compounds and inhibitors of fibril formation. The hexapeptide VEALYL, corresponding to the residues B12-17 of full-length insulin, has been identified as one of these short segments. Here, we analyzed the structures of multiple, morphologically different (fibrillar, microcrystal-like, oligomeric) [C-13,N-15]VEALYL samples by solid-state nuclear magnetic resonance complemented with results from molecular dynamics simulations. By performing NHHC/CHHC experiments, we could determine that the beta-strands within a given sheet of the amyloid-like fibrils formed by the insulin hexapeptide VEALYL are stacked in an antiparallel manner, whereas the sheet-to-sheet packing arrangement was found to be parallel. Experimentally observed secondary chemical shifts for all aggregate forms, as well as empty set and Psi backbone torsion angles calculated with TALOS, are indicative of beta-strand conformation, consistent with the published crystal structure (PDB ID: 2OMQ). Thus, we could demonstrate that the structural features of all the observed VEALYL aggregates are in agreement with the previously observed homosteric zipper spine packing in the crystalline state, suggesting that several distinct aggregate morphologies share the same molecular architecture. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Doctor of Philosophy

    Get PDF
    dissertationThe unstable expansion of the polyglutamine (polyQ) tract is a critical factor in the pathogenic pathway of at least ten neurodegenerative diseases, including Huntington's disease, spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and seven spinocerebellar ataxias, all of which are termed as polyglutamine diseases. One less understood but common feature of polyQ diseases is polyQ protein aggregation. This dissertation explores the protein folding, hydrogen bonding, and water accessibility changes which are induced by the enlargement of the polyQ tract using advanced informatics and computational methods, including protein 3D structure modeling and molecular dynamics simulations. This dissertation also demonstrates that these state-of-the-art computational and informatics methods are powerful tools to provide useful insights into protein aggregation in polyQ diseases. The enlargement of polyQ segments affects both local and global structures of polyQ proteins as well as their water-accessibility, hydrogen bond patterns, and other structural characteristics. Results from both isolated polyQ and polyQ segments in the context of ataxin-2 and ataxin-3 show that the polyQ tracts increasingly prefer self-interaction as the lengths of the tracts increase, indicating an increased tendency toward aggregation among larger polyQ tracts. These results provide new insights into possible pathogenic mechanisms of polyQ diseases based solely on the increased propensity toward polyQ aggregation and suggest that the modulation of solvent-polyQ interaction may be a possible therapeutic strategy for treating polyQ diseases. The analysis pipeline designed and used in this study is an effective way to study the molecular mechanism of polyQ diseases, and can be generalized to study other diseases associated with the protein conformation changes, such as Parkinson's disease, Alzheimer's disease, and cancer

    Molecular Mechanism of Early Amyloid Self-Assembly Revealed by Computational Modeling

    Get PDF
    Protein misfolding followed by the formation of aggregates, is an early step in the cascade of conformational changes in a protein that underlie the development of several neurodegenerative diseases, including Alzheimer’s and Parkinson’s diseases. Efforts aimed at understanding this process have produced little clarity and the mechanism remains elusive. Here, we demonstrate that the hairpin fold, a structure found in the early folding intermediates of amyloid b, induces morphological and stability changes in the aggregates of Aβ(14-23) peptide. We structurally characterized the interactions of monomer and hairpin using extended molecular dynamics (MD) simulations, which revealed a novel intercalated type complex. These finding suggest that folding patterns of amyloid proteins define the aggregation pathway. Computational analysis was then used to characterize the dimerization of full-length Aβ peptide and reveal their dynamic properties. Aβ dimers did not show β-sheet structures, as one may expect based on the known structures of Aβ fibrils, rather dimers are stabilized by hydrophobic interactions in the central hydrophobic regions. Comparison between Aβ40 and Aβ42 showed that overall, the dimers of both alloforms exhibit similar interaction strengths. However, the interaction patterns are significantly different. A novel aggregation pathway, able to describe aggregation at physiologically relevant concentrations, was elucidated when aggregation of amyloid proteins was performed in presence of surfaces. Computational analysis revealed that interaction of a monomer with the surface is accompanied by the structural transition of the monomer; which can then facilitate binding of another monomer and form a dimer. Compared to our previous data we observed an almost five-fold faster dimer formation. Further investigation of the surface-mediated aggregation revealed that lipid membranes promote aggregation of a-syn protein. MD simulations demonstrate that a-syn monomers change conformation upon interaction with the bilayers. On POPS, a-syn monomer protrudes from the surface. This conformation on POPS dramatically facilitates assembly of a dimer that remains stable over the entire simulation period. These findings are in line with experimental data. Overall, the studies described in this thesis provide the structural basis for the early stages of the misfolding and aggregation process of amyloid proteins

    Amyloid Proteins Structure, Dynamics, Interactions and Early Stages of Self-Assembly

    Get PDF
    The self-assembly and aggregation of amyloid protein are associated with several neurodegenerative diseases. The evidence indicates that the oligomeric intermediates, formed prior to the final fibrillary product, are the primary culprits of neurotoxicity. Although tremendous efforts have been dedicated for the characterization of structures, dynamics and toxic-related hallmarks of the oligomers, to date, yet the mechanism of such assembly from disordered monomers and their structure remain elusive. In this dissertation, I focused on understanding the dimerization process of amyloid proteins and peptides of different sizes and I combined experimental studies with high-power computer simulations. The AFM force spectroscopy experiments showed that within dimers misfolded states of peptides were characterized by a lifetime as large as ∼1 s. Compared with the conformational dynamics of monomers, dimerization stabilized the misfolded states by many orders of magnitude. To characterize structure of the dimers, the all-atom Molecular Dynamics (MD) simulations were employed. These MD simulations indeed revealed the stabilization of dimers when they form antiparallel of β-sheet conformation. The hydrogen bonds, salt bridges, and weakly polar interactions further stabilized the dimer structure. The simulations led to several structures, so to distinguish between them and identify the one that was observed in the experiment, a novel computational approach termed Monte Carlo Pulling (MCP) was developed. The key property of this approach is the ability to simulate the AFM force spectroscopy experiment at conditions identical ones used in the experiment enabling us to identify the appropriate computational model of the dimer by direct comparison with the AFM experiment. A comparison of experimental results with the computational data for two amyloid peptides allowed us for the first time to identify the dimers analyzed in the experiment and characterize their structure. These studies demonstrated that although hydrogen bonds were the major contributors to dimer dissociation, the aromatic-aromatic interaction also contributed to the dimer rupture process. Entirely unexpected results were obtained in the application of this combined approach to characterization of dimers formed by full-size Aβ42 dimers. The dimers were stabilized primarily by interactions within the central hydrophobic regions and C-terminal region with a contribution from local hydrogen bonding. The dimers were dynamic as evidenced by the existence of a set of conformations and computational analyses of the dimer dissociation process. Although Aβ42 protein formed stable dimers, but their structure was entirely different from the ones reported for the Aβ42 protein in fibrils. In fact a set of structures was identified and we hypothesize that different structures can be nuclei for the Aβ42 assembly in different morphologies. To characterize dimerization of such large amyloid protein as α-Synuclein (α-Syn) (140 residues), a novel combined approach was utilized. The structure and dynamics of the dimers was characterized by high-speed AFM and Monte Carlo modeling was used to characterize the protein structure. These studies showed that the hydrophobic region of α-Syn facilitated the formation of compact structures. Surprisingly, the dynamics of one α-Syn dimers shared a number of similar features with the dissociation process in Aβ42 simulations. Altogether, our results revealed structure of transiently existing dimeric forms of amyloid proteins. Given the fact that the dimers are the very first oligomers of amyloids, this novel information is indispensable drug design activity and development of novel therapeutic tools for early diagnostic of AD and PD and opens prospects for understanding molecular mechanisms of early onset of AD and PD and development of the preventive means for these devastating diseases

    The role of water in the primary nucleation of protein amyloid aggregation

    Get PDF
    The understanding of the complex conformational landscape of amyloid aggregation and its modulation by relevant physicochemical and cellular factors is a prerequisite for elucidating some of the molecular basis of pathology in amyloid related diseases, and for developing and evaluating effective disease-specific therapeutics to reduce or eliminate the underlying sources of toxicity in these diseases. Interactions of proteins with solvating water have been long considered to be fundamental in mediating their function and folding; however, the relevance of water in the process of protein amyloid aggregation has been largely overlooked. Here, we provide a perspective on the role water plays in triggering primary amyloid nucleation of intrinsically disordered proteins (IDPs) based on recent experimental evidences. The initiation of amyloid aggregation likely results from the synergistic effect between both protein intermolecular interactions and the properties of the water hydration layer of the protein surface. While the self-assembly of both hydrophobic and hydrophilic IDPs would be thermodynamically favoured due to large water entropy contributions, large desolvation energy barriers are expected, particularly for the nucleation of hydrophilic IDPs. Under highly hydrating conditions, primary nucleation is slow, being facilitated by the presence of nucleation-active surfaces (heterogeneous nucleation). Under conditions of poor water activity, such as those found in the interior of protein droplets generated by liquid-liquid phase separation, however, the desolvation energy barrier is significantly reduced, and nucleation can occur very rapidly in the bulk of the solution (homogeneous nucleation), giving rise to structurally distinct amyloid polymorphs. Water, therefore, plays a key role in modulating the transition free energy of amyloid nucleation, thus governing the initiation of the process, and dictating the type of preferred primary nucleation and the type of amyloid polymorph generated, which could vary depending on the particular microenvironment that the protein molecules encounter in the cell

    Molecular simulation studies of the prion protein: from disease-linked variants to ligand binding

    Get PDF
    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neu-rodegenerative disorders (198). The crucial event in the development of these diseases is the conformational change of a membrane bound protein, the cellular PrPC in Figure 3.1, into a disease associated, bril-forming isoform (199). Despite their rare incidence, TSEs have captured very large attention from the scienti c community due to the unorthodox mechanism by which prion diseases are transmitted..

    Investigating the Disordered and Membrane-Active Peptide A-Cage-C Using Conformational Ensembles

    Get PDF
    The driving forces and conformational pathways leading to amphitropic protein-membrane binding and in some cases also to protein misfolding and aggregation is the subject of intensive research. In this study, a chimeric polypeptide, A-Cage-C, derived from α-Lactalbumin is investigated with the aim of elucidating conformational changes promoting interaction with bilayers. From previous studies, it is known that A-Cage-C causes membrane leakages associated with the sporadic formation of amorphous aggregates on solid-supported bilayers. Here we express and purify double-labelled A-Cage-C and prepare partially deuterated bicelles as a membrane mimicking system. We investigate A-Cage-C in the presence and absence of these bicelles at non-binding (pH 7.0) and binding (pH 4.5) conditions. Using in silico analyses, NMR, conformational clustering, and Molecular Dynamics, we provide tentative insights into the conformations of bound and unbound A-Cage-C. The conformation of each state is dynamic and samples a large amount of overlapping conformational space. We identify one of the clusters as likely representing the binding conformation and conclude tentatively that the unfolding around the central W23 segment and its reorientation may be necessary for full intercalation at binding conditions (pH 4.5). We also see evidence for an overall elongation of A-Cage-C in the presence of model bilayers.publishedVersio
    corecore