13,140 research outputs found

    Protected gates for topological quantum field theories

    Get PDF
    We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators --- for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically-local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons; in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.Comment: 50 pages, many figures, v3: updated to match published versio

    1D Many-body localized Floquet systems II: Symmetry-Broken phases

    Full text link
    Recent work suggests that a sharp definition of `phase of matter' can be given for periodically driven `Floquet' quantum systems exhibiting many-body localization. In this work we propose a classification of the phases of interacting Floquet localized systems with (completely) spontaneously broken symmetries -- we focus on the one dimensional case, but our results appear to generalize to higher dimensions. We find that the different Floquet phases correspond to elements of Z(G)Z(G), the centre of the symmetry group in question. In a previous paper we offered a companion classification of unbroken, i.e., paramagnetic phases.Comment: Published versio

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou

    The computational magic of the ventral stream

    Get PDF
    I argue that the sample complexity of (biological, feedforward) object recognition is mostly due to geometric image transformations and conjecture that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-based modules that learn transformations from unsupervised visual experience. The main theorems show that these modules provide (for every object) a signature which is invariant to local affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The identification of these memory-based modules with complex (and simple) cells in visual areas leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invariance to transformations. I show that the memory complexity of learning affine transformations is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the subgroup of translations and the subgroups of rotations and scalings. I then show how translations are automatically selected as the only learnable transformations during development by enforcing small apertures – eg small receptive fields – in the first layer.

In a third part I show that the transformations represented in each area can be optimized in terms of storage and robustness, as a consequence determining the tuning of the neurons in the area, rather independently (under normal conditions) of the statistics of natural images. I describe a model of learning that can be proved to have this property, linking in an elegant way the spectral properties of the signatures with the tuning of receptive fields in different areas. A surprising implication of these theoretical results is that the computational goals and some of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the sense of physics) of the visual world through a process of unsupervised correlational learning, based on Hebbian synapses. In particular, simple and complex cells do not directly care about oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole ventral stream the preferred features reported for neurons in different areas are only a symptom of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together this theory-in-fieri makes several broad predictions, some of which are:

-invariance to small transformations in early areas (eg translations in V1) may underly stability of visual perception (suggested by Stu Geman);

-each cell’s tuning properties are shaped by visual experience of image transformations during developmental and adult plasticity;

-simple cells are likely to be the same population as complex cells, arising from different convergence of the Hebbian learning rule. The input to complex “complex” cells are dendritic branches with simple cell properties;

-class-specific transformations are learned and represented at the top of the ventral stream hierarchy; thus class-specific modules such as faces, places and possibly body areas should exist in IT;

-the type of transformations that are learned from visual experience depend on the size of the receptive fields and thus on the area (layer in the models) – assuming that the size increases with layers;

-the mix of transformations learned in each area influences the tuning properties of the cells oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);

-features must be discriminative and invariant: invariance to transformations is the primary determinant of the tuning of cortical neurons rather than statistics of natural images.

The theory is broadly consistent with the current version of HMAX. It explains it and extend it in terms of unsupervised learning, a broader class of transformation invariance and higher level modules. The goal of this paper is to sketch a comprehensive theory with little regard for mathematical niceties. If the theory turns out to be useful there will be scope for deep mathematics, ranging from group representation tools to wavelet theory to dynamics of learning
    corecore