55 research outputs found

    Characterizing minimal semantics-preserving slices of predicate-linear, free, liberal program schemas

    Get PDF
    This is a preprint version of the article - Copyright @ 2011 ElsevierA program schema defines a class of programs, all of which have identical statement structure, but whose functions and predicates may differ. A schema thus defines an entire class of programs according to how its symbols are interpreted. A subschema of a schema is obtained from a schema by deleting some of its statements. We prove that given a schema S which is predicate-linear, free and liberal, such that the true and false parts of every if predicate satisfy a simple additional condition, and a slicing criterion defined by the final value of a given variable after execution of any program defined by S, the minimal subschema of S which respects this slicing criterion contains all the function and predicate symbols ‘needed’ by the variable according to the data dependence and control dependence relations used in program slicing, which is the symbol set given by Weiser’s static slicing algorithm. Thus this algorithm gives predicate-minimal slices for classes of programs represented by schemas satisfying our set of conditions. We also give an example to show that the corresponding result with respect to the slicing criterion defined by termination behaviour is incorrect. This complements a result by the authors in which S was required to be function-linear, instead of predicate-linear.This work was supported by a grant from the Engineering and Physical Sciences Research Council, Grant EP/E002919/1

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 29th European Symposium on Programming, ESOP 2020, which was planned to take place in Dublin, Ireland, in April 2020, as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The actual ETAPS 2020 meeting was postponed due to the Corona pandemic. The papers deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Computational externalism: The semantic picture of implementation.

    Get PDF
    The property of being the realization of a computational structure has been argued to be observer-relative. After contrasting the problematic individuation of states in computational systems with the unproblematic individuation of states in dynamical systems, a general diagnosis of the problem is put forward. It is argued that the unwanted proliferation of models for the relation of implementation cannot be blocked unless the labelling scheme is restricted to semantically evaluated items. The instantiation of mathematical dynamical systems, by contrast, is showed to be immune to analogous skeptical arguments due to the virtuous role of measurements in grounding the relevant abstractions. Naturalized semantic properties are proposed to serve as a surrogate for measurements in grounding the relevant abstractions from the physical to the computational level of description, thus making implementations objective. It is argued that a view of implementation that abandons the pervasive internalist view in favor of a view of implementation according to which inputs and outputs are individuated by their broad semantic properties allows us to accept the validity of observer-relativity arguments while preserving the satisfaction of the desiderata of a theory of implementation, as well as the explanatory power of computational- ism as a theory of the mind. The general idea is that of incorporating teleological theories of intentionality within the foundational heart of the notion of computation. An important corollary is that computational properties must be understood as broadly instantiated by relational properties of the implementing system and of its environment. The proposed understanding of implementation is then tested against a number of recalcitrant problems of computationalism. It is argued to be immune to standard objections

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field
    • 

    corecore