1,682 research outputs found

    Single-edge monotonic sequences of graphs and linear-time algorithms for minimal completions and deletions

    Get PDF
    AbstractWe study graph properties that admit an increasing, or equivalently decreasing, sequence of graphs on the same vertex set such that for any two consecutive graphs in the sequence their difference is a single edge. This is useful for characterizing and computing minimal completions and deletions of arbitrary graphs into having these properties. We prove that threshold graphs and chain graphs admit such sequences. Based on this characterization and other structural properties, we present linear-time algorithms both for computing minimal completions and deletions into threshold, chain, and bipartite graphs, and for extracting a minimal completion or deletion from a given completion or deletion. Minimum completions and deletions into these classes are NP-hard to compute

    Exploring Subexponential Parameterized Complexity of Completion Problems

    Get PDF
    Let F{\cal F} be a family of graphs. In the F{\cal F}-Completion problem, we are given a graph GG and an integer kk as input, and asked whether at most kk edges can be added to GG so that the resulting graph does not contain a graph from F{\cal F} as an induced subgraph. It appeared recently that special cases of F{\cal F}-Completion, the problem of completing into a chordal graph known as Minimum Fill-in, corresponding to the case of F={C4,C5,C6,}{\cal F}=\{C_4,C_5,C_6,\ldots\}, and the problem of completing into a split graph, i.e., the case of F={C4,2K2,C5}{\cal F}=\{C_4, 2K_2, C_5\}, are solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}. The exploration of this phenomenon is the main motivation for our research on F{\cal F}-Completion. In this paper we prove that completions into several well studied classes of graphs without long induced cycles also admit parameterized subexponential time algorithms by showing that: - The problem Trivially Perfect Completion is solvable in parameterized subexponential time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})}n^{O(1)}, that is F{\cal F}-Completion for F={C4,P4}{\cal F} =\{C_4, P_4\}, a cycle and a path on four vertices. - The problems known in the literature as Pseudosplit Completion, the case where F={2K2,C4}{\cal F} = \{2K_2, C_4\}, and Threshold Completion, where F={2K2,P4,C4}{\cal F} = \{2K_2, P_4, C_4\}, are also solvable in time 2O(klogk)nO(1)2^{O(\sqrt{k}\log{k})} n^{O(1)}. We complement our algorithms for F{\cal F}-Completion with the following lower bounds: - For F={2K2}{\cal F} = \{2K_2\}, F={C4}{\cal F} = \{C_4\}, F={P4}{\cal F} = \{P_4\}, and F={2K2,P4}{\cal F} = \{2K_2, P_4\}, F{\cal F}-Completion cannot be solved in time 2o(k)nO(1)2^{o(k)} n^{O(1)} unless the Exponential Time Hypothesis (ETH) fails. Our upper and lower bounds provide a complete picture of the subexponential parameterized complexity of F{\cal F}-Completion problems for F{2K2,C4,P4}{\cal F}\subseteq\{2K_2, C_4, P_4\}.Comment: 32 pages, 16 figures, A preliminary version of this paper appeared in the proceedings of STACS'1

    Multiplicative Lidskii's inequalities and optimal perturbations of frames

    Get PDF
    In this paper we study two design problems in frame theory: on the one hand, given a fixed finite frame \cF for \hil\cong\C^d we compute those dual frames \cG of \cF that are optimal perturbations of the canonical dual frame for \cF under certain restrictions on the norms of the elements of \cG. On the other hand, for a fixed finite frame \cF=\{f_j\}_{j\in\In} for \hil we compute those invertible operators VV such that VVV^*V is a perturbation of the identity and such that the frame V\cdot \cF=\{V\,f_j\}_{j\in\In} - which is equivalent to \cF - is optimal among such perturbations of \cF. In both cases, optimality is measured with respect to submajorization of the eigenvalues of the frame operators. Hence, our optimal designs are minimizers of a family of convex potentials that include the frame potential and the mean squared error. The key tool for these results is a multiplicative analogue of Lidskii's inequality in terms of log-majorization and a characterization of the case of equality.Comment: 22 page

    Effective description of brane terms in extra dimensions

    Get PDF
    We study how theories defined in (extra-dimensional) spaces with localized defects can be described perturbatively by effective field theories in which the width of the defects vanishes. These effective theories must incorporate a ``classical'' renormalization, and we propose a renormalization prescription a la dimensional regularization for codimension 1, which can be easily used in phenomenological applications. As a check of the validity of this setting, we compare some general predictions of the renormalized effective theory with those obtained in a particular ultraviolet completion based on deconstruction.Comment: 28 page
    corecore