482 research outputs found

    Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications

    Full text link
    Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two distinct exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10^4) tasks; and (iv) fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing

    Challenges and Work Directions for Europe

    Get PDF
    International audienceEmbedded Systems are components integrating software and hardware, that are jointly and specifically designed to provide a given set of functionalities. These components may be used in a huge variety of applications, including transport (avionics, space, automotive, trains), electrical and electronic appliances (cameras, toys, television, washers, dryers, audio systems, and cellular phones), process control (energy production and distribution, factory automation), telecommunications (satellites, mobile phones and telecom networks), security (e-commerce, smart cards), etc. We expect that within a short timeframe, embedded systems will be a part of virtually all equipment designed or manufactured in Europe, the USA, and Asia

    Universally composable and customizable post-processing for practical quantum key distribution

    Get PDF
    In quantum key distribution (QKD), a secret key is generated between two distant parties by transmitting quantum states. Experimental measurements on the quantum states are then transformed to a secret key by classical post-processing. Here, we propose a construction framework in which QKD classical post-processing can be custom made. Though seemingly obvious, the concept of concatenating classical blocks to form a whole procedure does not automatically apply to the formation of a quantum cryptographic procedure since the security of the entire QKD procedure rests on the laws of quantum mechanics and classical blocks are originally designed and characterized without regard to any properties of these laws. Nevertheless, we justify such concept of concatenating classical blocks in constructing QKD classical post-processing procedures, along with a relation to the universal-composability-security parameter. Consequently, effects arising from an actual QKD experiment, such as those due to the finiteness of the number of signals used, can be dealt with by employing suitable post-processing blocks. Lastly, we use our proposed customizable framework to build a comprehensive generic recipe for classical post-processing that one can follow to derive a secret key from the measurement outcomes in an actual experiment. © 2010 Elsevier Ltd. All rights reserved.postprin

    Data abstraction and the correctness of modular programming

    Get PDF

    Digital Twin in the IoT context: a survey on technical features, scenarios and architectural models

    Get PDF
    Digital Twin is an emerging concept that is gaining attention in various industries. It refers to the ability to clone a physical object into a software counterpart. The softwarized object, termed logical object, reflects all the important properties and characteristics of the original object within a specific application context. To fully determine the expected properties of the Digital Twin, this paper surveys the state of the art starting from the original definition within the manufacturing industry. It takes into account related proposals emerging in other fields, namely, Augmented and Virtual Reality (e.g., avatars), Multi-agent systems, and virtualization. This survey thereby allows for the identification of an extensive set of Digital Twin features that point to the “softwarization” of physical objects. To properly consolidate a shared Digital Twin definition, a set of foundational properties is identified and proposed as a common ground outlining the essential characteristics (must-haves) of a Digital Twin. Once the Digital Twin definition has been consolidated, its technical and business value is discussed in terms of applicability and opportunities. Four application scenarios illustrate how the Digital Twin concept can be used and how some industries are applying it. The scenarios also lead to a generic DT architectural Model. This analysis is then complemented by the identification of software architecture models and guidelines in order to present a general functional framework for the Digital Twin. The paper, eventually, analyses a set of possible evolution paths for the Digital Twin considering its possible usage as a major enabler for the softwarization process

    Toward composing variable structure models and their interfaces: a case of intensional coupling definitions

    Get PDF
    In this thesis, we investigate a combination of traditional component-based and variable structure modeling. The focus is on a structural consistent specification of couplings in modular, hierarchical models with a variable structure. For this, we exploitintensional definitions, as known from logic, and introduce a novel intensional coupling definition, which allows a concise yet expressive specification of complex communication and interaction patterns in static as well as variable structure models, without the need to worryabout structural consistency.In der Arbeit untersuchen wir ein Zusammenbringen von klassischer komponenten-basierter und variabler Strukturmodellierung. Der Fokus liegt dabei auf der Spezifikation von strukturkonsistenten Kopplungen in modular-hierarchischen Modellen mit einer variablen Struktur. DafĂŒr nutzen wir intensionale Definitionen, wie sie aus der Logik bekannt sind, und fĂŒhren ein neuartiges Konzept von intensionalen Kopplungen ein, welches kompakte gleichzeitig ausdrucksstarke Spezifikationen von komplexen Kommunikations- und Interaktionsmuster in statischen und variablen Strukturmodellen erlaubt

    Certified randomness in quantum physics

    Get PDF
    The concept of randomness plays an important role in many disciplines. On one hand, the question of whether random processes exist is fundamental for our understanding of nature. On the other hand, randomness is a resource for cryptography, algorithms and simulations. Standard methods for generating randomness rely on assumptions on the devices that are difficult to meet in practice. However, quantum technologies allow for new methods for generating certified randomness. These methods are known as device-independent because do not rely on any modeling of the devices. Here we review the efforts and challenges to design device-independent randomness generators.Comment: 18 pages, 3 figure
    • 

    corecore