65 research outputs found

    Using Global Honeypot Networks to Detect Targeted ICS Attacks

    Get PDF
    Defending industrial control systems (ICS) in the cyber domain is both helped and hindered by bespoke systems integrating heterogeneous devices for unique purposes. Because of this fragmentation, observed attacks against ICS have been targeted and skilled, making them difficult to identify prior to initiation. Furthermore, organisations may be hesitant to share business-sensitive details of an intrusion that would otherwise assist the security community. In this work, we present the largest study of high-interaction ICS honeypots to date and demonstrate that a network of internet-connected honeypots can be used to identify and profile targeted ICS attacks. Our study relies on a network of 120 high-interaction honeypots in 22 countries that mimic programmable logic controllers and remote terminal units. We provide a detailed analysis of 80,000 interactions over 13 months, of which only nine made malicious use of an industrial protocol. Malicious interactions included denial of service and replay attacks that manipulated logic, leveraged protocol implementation gaps and exploited buffer overflows. While the yield was small, the impact was high, as these were skilled, targeted exploits previously unknown to the ICS community. By comparison with other ICS honeypot studies, we demonstrate that high-quality deception over long periods is necessary for such a honeypot network to be effective. As part of this argument, we discuss the accidental and intentional reasons why an internet-connected honeypot might be targeted. We also provide recommendations for effective, strategic use of such networks.Gates Cambridge Trus

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    Automatic Configuration of Programmable Logic Controller Emulators

    Get PDF
    Programmable logic controllers (PLCs), which are used to control much of the world\u27s critical infrastructures, are highly vulnerable and exposed to the Internet. Many efforts have been undertaken to develop decoys, or honeypots, of these devices in order to characterize, attribute, or prevent attacks against Industrial Control Systems (ICS) networks. Unfortunately, since ICS devices typically are proprietary and unique, one emulation solution for a particular vendor\u27s model will not likely work on other devices. Many previous efforts have manually developed ICS honeypots, but it is a very time intensive process. Thus, a scalable solution is needed in order to automatically configure PLC emulators. The ScriptGenE Framework presented in this thesis leverages several techniques used in reverse engineering protocols in order to automatically configure PLC emulators using network traces. The accuracy, flexibility, and efficiency of the ScriptGenE Framework is tested in three fully automated experiments

    Industrial control protocols in the Internet core: Dismantling operational practices

    Get PDF
    Industrial control systems (ICS) are managed remotely with the help of dedicated protocols that were originally designed to work in walled gardens. Many of these protocols have been adapted to Internet transport and support wide-area communication. ICS now exchange insecure traffic on an inter-domain level, putting at risk not only common critical infrastructure but also the Internet ecosystem (e.g., by DRDoS attacks). In this paper, we measure and analyze inter-domain ICS traffic at two central Internet vantage points, an IXP and an ISP. These traffic observations are correlated with data from honeypots and Internet-wide scans to separate industrial from non-industrial ICS traffic. We uncover mainly unprotected inter-domain ICS traffic and provide an in-depth view on Internet-wide ICS communication. Our results can be used (i) to create precise filters for potentially harmful non-industrial ICS traffic and (ii) to detect ICS sending unprotected inter-domain ICS traffic, being vulnerable to eavesdropping and traffic manipulation attacks. Additionally, we survey recent security extensions of ICS protocols, of which we find very little deployment. We estimate an upper bound of the deployment status for ICS security protocols in the Internet core

    Data-driven curation, learning and analysis for inferring evolving IoT botnets in the wild

    Get PDF
    The insecurity of the Internet-of-Things (IoT) paradigm continues to wreak havoc in consumer and critical infrastructure realms. Several challenges impede addressing IoT security at large, including, the lack of IoT-centric data that can be collected, analyzed and correlated, due to the highly heterogeneous nature of such devices and their widespread deployments in Internet-wide environments. To this end, this paper explores macroscopic, passive empirical data to shed light on this evolving threat phenomena. This not only aims at classifying and inferring Internet-scale compromised IoT devices by solely observing such one-way network traffic, but also endeavors to uncover, track and report on orchestrated "in the wild" IoT botnets. Initially, to prepare the effective utilization of such data, a novel probabilistic model is designed and developed to cleanse such traffic from noise samples (i.e., misconfiguration traffic). Subsequently, several shallow and deep learning models are evaluated to ultimately design and develop a multi-window convolution neural network trained on active and passive measurements to accurately identify compromised IoT devices. Consequently, to infer orchestrated and unsolicited activities that have been generated by well-coordinated IoT botnets, hierarchical agglomerative clustering is deployed by scrutinizing a set of innovative and efficient network feature sets. By analyzing 3.6 TB of recent darknet traffic, the proposed approach uncovers a momentous 440,000 compromised IoT devices and generates evidence-based artifacts related to 350 IoT botnets. While some of these detected botnets refer to previously documented campaigns such as the Hide and Seek, Hajime and Fbot, other events illustrate evolving threats such as those with cryptojacking capabilities and those that are targeting industrial control system communication and control services

    On Collaborative Intrusion Detection

    Get PDF
    Cyber-attacks have nowadays become more frightening than ever before. The growing dependency of our society on networked systems aggravates these threats; from interconnected corporate networks and Industrial Control Systems (ICSs) to smart households, the attack surface for the adversaries is increasing. At the same time, it is becoming evident that the utilization of classic fields of security research alone, e.g., cryptography, or the usage of isolated traditional defense mechanisms, e.g., firewalls and Intrusion Detection Systems ( IDSs ), is not enough to cope with the imminent security challenges. To move beyond monolithic approaches and concepts that follow a “cat and mouse” paradigm between the defender and the attacker, cyber-security research requires novel schemes. One such promis- ing approach is collaborative intrusion detection. Driven by the lessons learned from cyber-security research over the years, the aforesaid notion attempts to connect two instinctive questions: “if we acknowledge the fact that no security mechanism can detect all attacks, can we beneficially combine multiple approaches to operate together?” and “as the adversaries increasingly collaborate (e.g., Distributed Denial of Service (DDoS) attacks from whichever larger botnets) to achieve their goals, can the defenders beneficially collude too?”. Collabora- tive intrusion detection attempts to address the emerging security challenges by providing methods for IDSs and other security mech- anisms (e.g., firewalls and honeypots) to combine their knowledge towards generating a more holistic view of the monitored network. This thesis improves the state of the art in collaborative intrusion detection in several areas. In particular, the dissertation proposes methods for the detection of complex attacks and the generation of the corresponding intrusion detection signatures. Moreover, a novel approach for the generation of alert datasets is given, which can assist researchers in evaluating intrusion detection algorithms and systems. Furthermore, a method for the construction of communities of collab- orative monitoring sensors is given, along with a domain-awareness approach that incorporates an efficient data correlation mechanism. With regard to attacks and countermeasures, a detailed methodology is presented that is focusing on sensor-disclosure attacks in the con- text of collaborative intrusion detection. The scientific contributions can be structured into the following categories: Alert data generation: This thesis deals with the topic of alert data generation in a twofold manner: first it presents novel approaches for detecting complex attacks towards generating alert signatures for IDSs ; second a method for the synthetic generation of alert data is pro- posed. In particular, a novel security mechanism for mobile devices is proposed that is able to support users in assessing the security status of their networks. The system can detect sophisticated attacks and generate signatures to be utilized by IDSs . The dissertation also touches the topic of synthetic, yet realistic, dataset generation for the evaluation of intrusion detection algorithms and systems; it proposes a novel dynamic dataset generation concept that overcomes the short- comings of the related work. Collaborative intrusion detection: As a first step, the the- sis proposes a novel taxonomy for collaborative intrusion detection ac- companied with building blocks for Collaborative IDSs ( CIDSs ). More- over, the dissertation deals with the topics of (alert) data correlation and aggregation in the context of CIDSs . For this, a number of novel methods are proposed that aim at improving the clustering of mon- itoring sensors that exhibit similar traffic patterns. Furthermore, a novel alert correlation approach is presented that can minimize the messaging overhead of a CIDS. Attacks on CIDSs: It is common for research on cyber-defense to switch its perspective, taking on the viewpoint of attackers, trying to anticipate their remedies against novel defense approaches. The the- sis follows such an approach by focusing on a certain class of attacks on CIDSs that aim at identifying the network location of the monitor- ing sensors. In particular, the state of the art is advanced by proposing a novel scheme for the improvement of such attacks. Furthermore, the dissertation proposes novel mitigation techniques to overcome both the state of art and the proposed improved attacks. Evaluation: All the proposals and methods introduced in the dis- sertation were evaluated qualitatively, quantitatively and empirically. A comprehensive study of the state of the art in collaborative intru- sion detection was conducted via a qualitative approach, identifying research gaps and surveying the related work. To study the effective- ness of the proposed algorithms and systems extensive simulations were utilized. Moreover, the applicability and usability of some of the contributions in the area of alert data generation was additionally supported via Proof of Concepts (PoCs) and prototypes. The majority of the contributions were published in peer-reviewed journal articles, in book chapters, and in the proceedings of interna- tional conferences and workshops

    Next-Generation Industrial Control System (ICS) Security:Towards ICS Honeypots for Defence-in-Depth Security

    Get PDF
    The advent of Industry 4.0 and smart manufacturing has led to an increased convergence of traditional manufacturing and production technologies with IP communications. Legacy Industrial Control System (ICS) devices are now exposed to a wide range of previously unconsidered threats, which must be considered to ensure the safe operation of industrial processes. Especially as cyberspace is presenting itself as a popular domain for nation-state operations, including against critical infrastructure. Honeypots are a well-known concept within traditional IT security, and they can enable a more proactive approach to security, unlike traditional systems. More work needs to be done to understand their usefulness within OT and critical infrastructure. This thesis advances beyond current honeypot implementations and furthers the current state-of-the-art by delivering novel ways of deploying ICS honeypots and delivering concrete answers to key research questions within the area. This is done by answering the question previously raised from a multitude of perspectives. We discuss relevant legislation, such as the UK Cyber Assessment Framework, the US NIST Framework for Improving Critical Infrastructure Cybersecurity, and associated industry-based standards and guidelines supporting operator compliance. Standards and guidance are used to frame a discussion on our survey of existing ICS honeypot implementations in the literature and their role in supporting regulatory objectives. However, these deployments are not always correctly configured and might differ from a real ICS. Based on these insights, we propose a novel framework towards the classification and implementation of ICS honeypots. This is underpinned by a study into the passive identification of ICS honeypots using Internet scanner data to identify honeypot characteristics. We also present how honeypots can be leveraged to identify when bespoke ICS vulnerabilities are exploited within the organisational network—further strengthening the case for honeypot usage within critical infrastructure environments. Additionally, we demonstrate a fundamentally different approach to the deployment of honeypots. By deploying it as a deterrent, to reduce the likelihood that an adversary interacts with a real system. This is important as skilled attackers are now adept at fingerprinting and avoiding honeypots. The results presented in this thesis demonstrate that honeypots can provide several benefits to the cyber security of and alignment to regulations within the critical infrastructure environment

    Wide spectrum attribution: Using deception for attribution intelligence in cyber attacks

    Get PDF
    Modern cyber attacks have evolved considerably. The skill level required to conduct a cyber attack is low. Computing power is cheap, targets are diverse and plentiful. Point-and-click crimeware kits are widely circulated in the underground economy, while source code for sophisticated malware such as Stuxnet is available for all to download and repurpose. Despite decades of research into defensive techniques, such as firewalls, intrusion detection systems, anti-virus, code auditing, etc, the quantity of successful cyber attacks continues to increase, as does the number of vulnerabilities identified. Measures to identify perpetrators, known as attribution, have existed for as long as there have been cyber attacks. The most actively researched technical attribution techniques involve the marking and logging of network packets. These techniques are performed by network devices along the packet journey, which most often requires modification of existing router hardware and/or software, or the inclusion of additional devices. These modifications require wide-scale infrastructure changes that are not only complex and costly, but invoke legal, ethical and governance issues. The usefulness of these techniques is also often questioned, as attack actors use multiple stepping stones, often innocent systems that have been compromised, to mask the true source. As such, this thesis identifies that no publicly known previous work has been deployed on a wide-scale basis in the Internet infrastructure. This research investigates the use of an often overlooked tool for attribution: cyber de- ception. The main contribution of this work is a significant advancement in the field of deception and honeypots as technical attribution techniques. Specifically, the design and implementation of two novel honeypot approaches; i) Deception Inside Credential Engine (DICE), that uses policy and honeytokens to identify adversaries returning from different origins and ii) Adaptive Honeynet Framework (AHFW), an introspection and adaptive honeynet framework that uses actor-dependent triggers to modify the honeynet envi- ronment, to engage the adversary, increasing the quantity and diversity of interactions. The two approaches are based on a systematic review of the technical attribution litera- ture that was used to derive a set of requirements for honeypots as technical attribution techniques. Both approaches lead the way for further research in this field

    JTIT

    Get PDF
    kwartalni

    Data-Driven Approaches for Detecting Malware-Infected IoT Devices and Characterizing Their Unsolicited Behaviors by Leveraging Passive Internet Measurements

    Get PDF
    Despite the benefits of Internet of Things (IoT) devices, the insecurity of IoT and their deployment nature have turned them into attractive targets for adversaries, which contributed to the rise of IoT-tailored malware as a major threat to the Internet ecosystem. In this thesis, we address the threats associated with the emerging IoT malware, which utilize exploited devices to perform large-scale cyber attacks (e.g., DDoS). To mitigate such threat, there is a need to possess an Internet perspective of the deployed IoT devices while building a better understanding about the behavioral characteristic of malware-infected devices, which is challenging due to the lack of empirical data and knowledge about the deployed IoT devices and their behavioral characteristics. To address these challenges, in this thesis, we leverage passive Internet measurements and IoT device information to detect exploited IoT devices and investigate their generated traffic at the network telescope (darknet). We aim at proposing data-driven approaches for effective and near real-time IoT threat detection and characterization. Additionally, we leverage a specialized IoT Honeypot to analyze a large corpus of real IoT malware binary executable. We aim at building a better understanding about the current state of IoT malware while addressing the problems of IoT malware classification and family attribution. To this end, we perform the following to achieve our objectives: First, we address the lack of empirical data and knowledge about IoT devices and their activities. To this end, we leverage an online IoT search engine (e.g., Shodan.io) to obtain publicly available device information in the realms of consumer and cyber-physical system (CPS), while utilizing passive network measurements collected at a large-scale network telescope (CAIDA), to infer compromised devices and their unsolicited activities. Indeed, we were among the first to report experimental results on detecting compromised IoT devices and their behavioral characteristics in the wild, while demonstrating their active involvement in large-scale malware-generated malicious activities such as Internet scanning. Additionally, we leverage the IoT-generated backscatter traffic towards the network telescope to shed light on IoT devices that were victims of intensive Denial of Service (DoS) attacks. Second, given the highly orchestrated nature of IoT-driven cyber-attacks, we focus on the analysis of IoT-generated scanning activities to detect and characterize scanning campaigns generated by IoT botnets. To this end, we aggregate IoT-generated traffic and performing association rules mining to infer campaigns through common scanning objectives represented by targeted destination ports. Further, we leverage behavioural characteristics and aggregated flow features to correlate IoT devices using DBSCAN clustering algorithm. Indeed, our findings shed light on compromised IoT devices, which tend to operate within well coordinated IoT botnets. Third, considering the huge number of IoT devices and the magnitude of their malicious scanning traffic, we focus on addressing the operational challenges to automate large-scale campaign detection and analysis while generating threat intelligence in a timely manner. To this end, we leverage big data analytic frameworks such as Apache Spark to develop a scalable system for automated detection of infected IoT devices and characterization of their scanning activities using our proposed approach. Our evaluation results with over 4TB of IoT traffic demonstrated the effectiveness of the system to infer scanning campaigns generated by IoT botnets. Moreover, we demonstrate the feasibility of the implemented system/framework as a platform for implementing further supporting applications, which leverage passive Internet measurement for characterizing IoT traffic and generating IoT-related threat intelligence. Fourth, we take first steps towards mitigating threats associated with the rise of IoT malware by creating a better understanding about the characteristics and inter-relations of IoT malware. To this end, we analyze about 70,000 IoT malware binaries obtained by a specialized IoT honeypot in the past two years. We investigate the distribution of IoT malware across known families, while exploring their detection timeline and persistent. Moreover, while we shed light on the effectiveness of IoT honeypots in detecting new/unknown malware samples, we utilize static and dynamic malware analysis techniques to uncover adversarial infrastructure and investigate functional similarities. Indeed, our findings enable unknown malware labeling/attribution while identifying new IoT malware variants. Additionally, we collect malware-generated scanning traffic (whenever available) to explore behavioral characteristics and associated threats/vulnerabilities. We conclude this thesis by discussing research gaps that pave the way for future work
    corecore