19,020 research outputs found

    Characterizing 2-crossing-critical graphs

    Full text link
    It is very well-known that there are precisely two minimal non-planar graphs: K5K_5 and K3,3K_{3,3} (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: they each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the M\"obius Ladder V10V_{10}; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10V_{10}; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8V_{8}.Comment: 176 pages, 28 figure

    Characterizing 2-crossing-critical graphs

    Get PDF
    It is very well-known that there are precisely two minimal non-planar graphs: K5 and K3,3 (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: They each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple, 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the Möbius Ladder V10; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8

    Two Results in Drawing Graphs on Surfaces

    Get PDF
    In this work we present results on crossing-critical graphs drawn on non-planar surfaces and results on edge-hamiltonicity of graphs on the Klein bottle. We first give an infinite family of graphs that are 2-crossing-critical on the projective plane. Using this result, we construct 2-crossing-critical graphs for each non-orientable surface. Next, we use 2-amalgamations to construct 2-crossing-critical graphs for each orientable surface other than the sphere. Finally, we contribute to the pursuit of characterizing 4-connected graphs that embed on the Klein bottle and fail to be edge-hamiltonian. We show that known 4-connected counterexamples to edge-hamiltonicity on the Klein bottle are hamiltonian and their structure allows restoration of edge-hamiltonicity with only a small change

    Analyzing Tree Attachments in 2-Crossing-Critical Graphs with a V8 Minor

    Get PDF
    The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of the graph in the plane. A graph G is k-crossing-critical if its crossing number is at least k and if every proper subgraph H of G has crossing number less than k. It follows directly from Kuratowski's Theorem that the 1-crossing-critical graphs are precisely the subdivisions of K{3,3} and K5. Characterizing the 2-crossing-critical graphs is an interesting open problem. Much progress has been made in characterizing the 2-crossing-critical graphs. The only remaining unexplained such graphs are those which are 3-connected, have a V8 minor but no V10 minor, and embed in the real projective plane. This thesis seeks to extend previous attempts at classifying this particular set of graphs by examining the graphs in this category where a tree structure is attached to a subdivision of V8. In this paper, we analyze which of the 106 possible 3-stars can be attached to a subdivision H of V8 in a 3-connected 2-crossing-critical graph. This analysis leads to a strong result, where we demonstrate that if a k-star is attached to a V8 in a 2-crossing-critical graph, then k <= 4. Finally, we significantly restrict the remaining trees which still need to be investigated under the same conditions

    Definitions of entanglement entropy of spin systems in the valence-bond basis

    Full text link
    The valence-bond structure of spin-1/2 Heisenberg antiferromagnets is closely related to quantum entanglement. We investigate measures of entanglement entropy based on transition graphs, which characterize state overlaps in the overcomplete valence-bond basis. The transition graphs can be generated using projector Monte Carlo simulations of ground states of specific hamiltonians or using importance-sampling of valence-bond configurations of amplitude-product states. We consider definitions of entanglement entropy based on the bonds or loops shared by two subsystems (bipartite entanglement). Results for the bond-based definition agrees with a previously studied definition using valence-bond wave functions (instead of the transition graphs, which involve two states). For the one dimensional Heisenberg chain, with uniform or random coupling constants, the prefactor of the logarithmic divergence with the size of the smaller subsystem agrees with exact results. For the ground state of the two-dimensional Heisenberg model (and also Neel-ordered amplitude-product states), there is a similar multiplicative violation of the area law. In contrast, the loop-based entropy obeys the area law in two dimensions, while still violating it in one dimension - both behaviors in accord with expectations for proper measures of entanglement entropy.Comment: 9 pages, 8 figures. v2: significantly expande

    Condensation of degrees emerging through a first-order phase transition in classical random graphs

    Get PDF
    Due to their conceptual and mathematical simplicity, Erd\"os-R\'enyi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results.Comment: 8 pages, 6 figure
    • …
    corecore