1,819 research outputs found

    Time Complexity of Decentralized Fixed-Mode Verification

    Get PDF
    Given an interconnected system, this note is concerned with the time complexity of verifying whether an unrepeated mode of the system is a decentralized fixed mode (DFM). It is shown that checking the decentralized fixedness of any distinct mode is tantamount to testing the strong connectivity of a digraph formed based on the system. It is subsequently proved that the time complexity of this decision problem using the proposed approach is the same as the complexity of matrix multiplication. This work concludes that the identification of distinct DFMs (by means of a deterministic algorithm, rather than a randomized one) is computationally very easy, although the existing algorithms for solving this problem would wrongly imply that it is cumbersome. This note provides not only a complexity analysis, but also an efficient algorithm for tackling the underlying problem

    Distributed Design for Decentralized Control using Chordal Decomposition and ADMM

    Full text link
    We propose a distributed design method for decentralized control by exploiting the underlying sparsity properties of the problem. Our method is based on chordal decomposition of sparse block matrices and the alternating direction method of multipliers (ADMM). We first apply a classical parameterization technique to restrict the optimal decentralized control into a convex problem that inherits the sparsity pattern of the original problem. The parameterization relies on a notion of strongly decentralized stabilization, and sufficient conditions are discussed to guarantee this notion. Then, chordal decomposition allows us to decompose the convex restriction into a problem with partially coupled constraints, and the framework of ADMM enables us to solve the decomposed problem in a distributed fashion. Consequently, the subsystems only need to share their model data with their direct neighbours, not needing a central computation. Numerical experiments demonstrate the effectiveness of the proposed method.Comment: 11 pages, 8 figures. Accepted for publication in the IEEE Transactions on Control of Network System

    Complexity of checking the existence of a stabilizing decentralized controller

    Get PDF
    Given an interconnected system, this paper is concerned with the time complexity of verifying if any given unrepeated mode of the system is a decentralized fixed mode (DFM). It is shown that checking the decentralized fixedness of any distinct mode is tantamount to testing the strong connectivity of a digraph formed based on the system. It is subsequently proved that the time complexity of this decision problem using the proposed approach is the same as the complexity of matrix multiplication. This work concludes that the identification of distinct decentralized fixed modes (by means of a deterministic algorithm, rather than a randomized one) is computationally very easy, although the existing algorithms for solving this problem would wrongly imply that it is cumbersome. This paper provides not only a complexity analysis, but also an efficient algorithm for tackling the underlying problem

    Decentralized Blocking Zeros and Decentralized Strong Stabilization Problem

    Get PDF
    Cataloged from PDF version of article.This paper is concerned with a new system theoretic concept, decentralized blocking zeros, and its applications in the design of decentralized controllers for linear time-invariant finitedimensional systems. The concept of decentralized blocking zeros is a generalization of its centralized counterpart to multichannel systems under decentralized control. Decentralized blocking zeros are defined as the common blocking zeros of the main diagonal transfer matrices and various complementary transfer matrices of a given plant. As an application of this concept, we consider the decentralized strong stabilization problem (DSSP) where the objective is to stabilize a plant using a stable decentralized controller. It is shown that a parity interlacing property should be satisfied among the real unstable poles and real unstable decentralized blocking zeros of the plant for the DSSP to be solvable. That parity interlacing property is also suf6icient for the solution of the DSSP for a large class of plants satisfying a certain connectivity condition. The DSSP is exploited in the solution of a special decentralized simultaneous stabilization problem, called the decentralized concurrent stabilization problem (DCSP). Various applications of the DCSP in the design of controllers for large-scale systems are also discussed

    Decentralized Blocking Zeros and the Decentralized Strong Stabilization Problem

    Get PDF
    This paper is concerned with a new system theoretic concept, decentralized blocking zeros, and its applications in the design of decentralized controllers for linear time-invariant finite-dimensional systems. The concept of decentralized blocking zeros is a generalization of its centralized counterpart to multichannel systems under decentralized control. Decentralized blocking zeros are defined as the common blocking zeros of the main diagonal transfer matrices and various complementary transfer matrices of a given plant. As an application of this concept, we consider the decentralized strong stabilization problem (DSSP) where the objective is to stabilize a plant using a stable decentralized controller. It is shown that a parity interlacing property should be satisfied among the real unstable poles and real unstable decentralized blocking zeros of the plant for the DSSP to be solvable. That parity interlacing property is also sufficient for the solution of the DSSP for a large class of plants satisfying a certain connectivity condition. The DSSP is exploited in the solution of a special decentralized simultaneous stabilization problem, called the decentralized concurrent stabilization problem (DCSP). Various applications of the DCSP in the design of controllers for large-scale systems are also discussed. © 1995 IEE

    A graph-theoretic method to find decentralized fixed modes of LTI systems

    Get PDF
    This paper deals with the decentralized pole assignability of interconnected systems by means of linear time-invariant (LTI) controllers. A simple graph-theoretic approach is proposed to identify the distinct decentralized fixed modes (DFMs) of the system, i.e., the unrepeated modes which cannot be moved by means of a LTI decentralized controller. The state-space representation of the system is transformed to the decoupled form using a proper change of coordinates. For any unrepeated mode, a matrix is then computed which resembles the transfer function matrix of the system at some point in the complex plane. A bipartite graph is constructed accordingly in terms of the computed matrix. Now, the problem of verifying if this mode is a DFM of the system reduces to checking if the constructed graph has a complete bipartite subgraph with a certain property. The sole restriction of this work is that it is only capable of identifying the distinct DFMs of a system. However, it is axiomatic that most of the modes of the real-world systems are normally distinct. The primary advantage of the present paper is its simplicity, compared to the existing ones which often require evaluating the rank of several matrices
    corecore