579 research outputs found

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit pe∈Q+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wj∈Z+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Generalized roof duality and bisubmodular functions

    Full text link
    Consider a convex relaxation f^\hat f of a pseudo-boolean function ff. We say that the relaxation is {\em totally half-integral} if f^(x)\hat f(x) is a polyhedral function with half-integral extreme points xx, and this property is preserved after adding an arbitrary combination of constraints of the form xi=xjx_i=x_j, xi=1−xjx_i=1-x_j, and xi=γx_i=\gamma where \gamma\in\{0, 1, 1/2} is a constant. A well-known example is the {\em roof duality} relaxation for quadratic pseudo-boolean functions ff. We argue that total half-integrality is a natural requirement for generalizations of roof duality to arbitrary pseudo-boolean functions. Our contributions are as follows. First, we provide a complete characterization of totally half-integral relaxations f^\hat f by establishing a one-to-one correspondence with {\em bisubmodular functions}. Second, we give a new characterization of bisubmodular functions. Finally, we show some relationships between general totally half-integral relaxations and relaxations based on the roof duality.Comment: 14 pages. Shorter version to appear in NIPS 201

    LP-Based Algorithms for Capacitated Facility Location

    Full text link
    Linear programming has played a key role in the study of algorithms for combinatorial optimization problems. In the field of approximation algorithms, this is well illustrated by the uncapacitated facility location problem. A variety of algorithmic methodologies, such as LP-rounding and primal-dual method, have been applied to and evolved from algorithms for this problem. Unfortunately, this collection of powerful algorithmic techniques had not yet been applicable to the more general capacitated facility location problem. In fact, all of the known algorithms with good performance guarantees were based on a single technique, local search, and no linear programming relaxation was known to efficiently approximate the problem. In this paper, we present a linear programming relaxation with constant integrality gap for capacitated facility location. We demonstrate that the fundamental theories of multi-commodity flows and matchings provide key insights that lead to the strong relaxation. Our algorithmic proof of integrality gap is obtained by finally accessing the rich toolbox of LP-based methodologies: we present a constant factor approximation algorithm based on LP-rounding.Comment: 25 pages, 6 figures; minor revision

    The Investment Management Game: Extending the Scope of the Notion of Core

    Full text link
    The core is a dominant solution concept in economics and cooperative game theory; it is predominantly used for profit, equivalently cost or utility, sharing. This paper demonstrates the versatility of this notion by proposing a completely different use: in a so-called investment management game, which is a game against nature rather than a cooperative game. This game has only one agent whose strategy set is all possible ways of distributing her money among investment firms. The agent wants to pick a strategy such that in each of exponentially many future scenarios, sufficient money is available in the right firms so she can buy an optimal investment for that scenario. Such a strategy constitutes a core imputation under a broad interpretation, though traditional formal framework, of the core. Our game is defined on perfect graphs, since the maximum stable set problem can be solved in polynomial time for such graphs. We completely characterize the core of this game, analogous to Shapley and Shubik characterization of the core of the assignment game. A key difference is the following technical novelty: whereas their characterization follows from total unimodularity, ours follows from total dual integralityComment: 16 pages. arXiv admin note: text overlap with arXiv:2209.0490

    The Number of Nowhere-Zero Flows on Graphs and Signed Graphs

    Get PDF
    A nowhere-zero kk-flow on a graph Γ\Gamma is a mapping from the edges of Γ\Gamma to the set \{\pm1, \pm2, ..., \pm(k-1)\} \subset \bbZ such that, in any fixed orientation of Γ\Gamma, at each node the sum of the labels over the edges pointing towards the node equals the sum over the edges pointing away from the node. We show that the existence of an \emph{integral flow polynomial} that counts nowhere-zero kk-flows on a graph, due to Kochol, is a consequence of a general theory of inside-out polytopes. The same holds for flows on signed graphs. We develop these theories, as well as the related counting theory of nowhere-zero flows on a signed graph with values in an abelian group of odd order. Our results are of two kinds: polynomiality or quasipolynomiality of the flow counting functions, and reciprocity laws that interpret the evaluations of the flow polynomials at negative integers in terms of the combinatorics of the graph.Comment: 17 pages, to appear in J. Combinatorial Th. Ser.

    On duality and fractionality of multicommodity flows in directed networks

    Get PDF
    In this paper we address a topological approach to multiflow (multicommodity flow) problems in directed networks. Given a terminal weight μ\mu, we define a metrized polyhedral complex, called the directed tight span TμT_{\mu}, and prove that the dual of μ\mu-weighted maximum multiflow problem reduces to a facility location problem on TμT_{\mu}. Also, in case where the network is Eulerian, it further reduces to a facility location problem on the tropical polytope spanned by μ\mu. By utilizing this duality, we establish the classifications of terminal weights admitting combinatorial min-max relation (i) for every network and (ii) for every Eulerian network. Our result includes Lomonosov-Frank theorem for directed free multiflows and Ibaraki-Karzanov-Nagamochi's directed multiflow locking theorem as special cases.Comment: 27 pages. Fixed minor mistakes and typos. To appear in Discrete Optimizatio
    • …
    corecore