9,560 research outputs found

    Novel TCAD oriented definition of the off-state breakdown voltage in Schottky-gate FETs: a 4H SiC MESFET case study

    Get PDF
    Physics-based breakdown voltage optimization in Schottky-barrier power RF and microwave field-effect transistors as well as in high-speed power-switching diodes is today an important topic in technology computer-aided design (TCAD). OFF-state breakdown threshold criteria based on the magnitude of the Schottky-barrier leakage current can be directly applied to TCAD; however, the results obtained are not accurate due to the large uncertainty in the Schottky-barrier parameters and models arising above all in advanced wide-gap semiconductors and to the need of performing high-temperature simulations to improve the numerical convergence of the model. In this paper, we suggest a novel OFF-state breakdown criterion, based on monitoring the magnitude (at the drain edge of the gate) of the electric field component parallel to the current density. The new condition is shown to be consistent with more conventional definitions and to exhibit a significantly reduced sensitivity with respect to physical parameter variation

    When self-consistency makes a difference

    Get PDF
    Compound semiconductor power RF and microwave device modeling requires, in many cases, the use of selfconsistent electrothermal equivalent circuits. The slow thermal dynamics and the thermal nonlinearity should be accurately included in the model; otherwise, some response features subtly related to the detailed frequency behavior of the slow thermal dynamics would be inaccurately reproduced or completely distorted. In this contribution we show two examples, concerning current collapse in HBTs and modeling of IMPs in GaN HEMTs. Accurate thermal modeling is proved to be be made compatible with circuit-oriented CAD tools through a proper choice of system-level approximations; in the discussion we exploit a Wiener approach, but of course the strategy should be tailored to the specific problem under consideratio

    Wide-field Magnetic Field and Temperature Imaging using Nanoscale Quantum Sensors

    Full text link
    The simultaneous imaging of magnetic fields and temperature (MT) is important in a range of applications, including studies of carrier transport, solid-state material dynamics, and semiconductor device characterization. Techniques exist for separately measuring temperature (e.g., infrared (IR) microscopy, micro-Raman spectroscopy, and thermo-reflectance microscopy) and magnetic fields (e.g., scanning probe magnetic force microscopy and superconducting quantum interference devices). However, these techniques cannot measure magnetic fields and temperature simultaneously. Here, we use the exceptional temperature and magnetic field sensitivity of nitrogen vacancy (NV) spins in conformally-coated nanodiamonds to realize simultaneous wide-field MT imaging. Our "quantum conformally-attached thermo-magnetic" (Q-CAT) imaging enables (i) wide-field, high-frame-rate imaging (100 - 1000 Hz); (ii) high sensitivity; and (iii) compatibility with standard microscopes. We apply this technique to study the industrially important problem of characterizing multifinger gallium nitride high-electron-mobility transistors (GaN HEMTs). We spatially and temporally resolve the electric current distribution and resulting temperature rise, elucidating functional device behavior at the microscopic level. The general applicability of Q-CAT imaging serves as an important tool for understanding complex MT phenomena in material science, device physics, and related fields

    Interfacial charge transfer in nanoscale polymer transistors

    Get PDF
    Interfacial charge transfer plays an essential role in establishing the relative alignment of the metal Fermi level and the energy bands of organic semiconductors. While the details remain elusive in many systems, this charge transfer has been inferred in a number of photoemission experiments. We present electronic transport measurements in very short channel (L<100L < 100 nm) transistors made from poly(3-hexylthiophene) (P3HT). As channel length is reduced, the evolution of the contact resistance and the zero-gate-voltage conductance are consistent with such charge transfer. Short channel conduction in devices with Pt contacts is greatly enhanced compared to analogous devices with Au contacts, consistent with charge transfer expectations. Alternating current scanning tunneling microscopy (ACSTM) provides further evidence that holes are transferred from Pt into P3HT, while much less charge transfer takes place at the Au/P3HT interface.Comment: 19 preprint pages, 6 figure

    Wave techniques for noise modeling and measurement

    Get PDF
    The noise wave approach is applied to analysis, modeling, and measurement applications. Methods are presented for the calculation of component and network noise wave correlation matrices. Embedding calculations, relations to two-port figures-of-merit, and transformations to traditional representations are discussed. Simple expressions are derived for MESFET and HEMT noise wave parameters based on a linear equivalent circuit. A noise wave measurement technique is presented and experimentally compared with the conventional method

    Assessment of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors through a harmonic-balance-based CAD-oriented dynamic stability analysis technique

    Get PDF
    We present a novel analysis of thermal instabilities and oscillations in multifinger heterojunction bipolar transistors (HBTs), based on a harmonic-balance computer-aided-design (CAD)-oriented approach to the dynamic stability assessment. The stability analysis is carried out in time-periodic dynamic conditions by calculating the Floquet multipliers of the limit cycle representing the HBT working point. Such a computation is performed directly in the frequency domain, on the basis of the Jacobian of the harmonic-balance problem yielding the limit cycle. The corresponding stability assessment is rigorous, and the efficient calculation method makes it readily implementable in CAD tools, thus allowing for circuit and device optimization. Results on three- and four-finger layouts are presented, including closed-form oscillation criteria for two-finger device

    ANN Model For SiGe HBTs Constructed From Time-Domain Large-Signal Measurements

    Get PDF
    We construct a large-signal artificial neural network (ANN) model for SiGe HBTs, directly from time-domain large-signal measurements. It is known that HBTs are very sensitive to self-heating and therefore we explicitly study the effect on the model accuracy of the incorporation of the self-heating effect in the behavioural model description. Finally, we show that this type of models can be accurate at extreme operating conditions, where classical compact models start to fail
    corecore