11,669 research outputs found

    Time-Scale Domain Characterization of Time-Varying Ultrawideband Infostation Channel

    Get PDF
    The time-scale domain geometrical-based method for the characterization of the time varying ultrawideband (UWB) channel typical of an infostation channel is presented. Compared to methods that use Doppler shift as a measure of time-variation in the channel this model provides a more reliable measure of frequency dispersion caused by terminal mobility in the UWB infostation channel. Particularly, it offers carrier frequency independent method of computing wideband channel responses and parameters which are important for ultrawideband systems. Results show that the frequency dispersion of the channel depends on the frequency and not on the choice of bandwidth. And time dispersion depends on bandwidth and not on the frequency. It is also shown that for time-varying UWB, frame length defined over the coherence time obtained with reference to the carrier frequency results in an error margin which can be reduced by using the coherence time defined with respect to the maximum frequency in a given frequency band. And the estimation of the frequency offset using the time-scale domain (wideband) model presented here (especially in the case of multiband UWB frequency synchronization) is more accurate than using frequency offset estimate obtained from narrowband models

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Time frequency analysis for wireless channel characterization / Zaiton Sharif

    Get PDF
    The ability to accurately characterize the wireless communication channel is essential for testing and designing any wireless communication systems. It fulfills the demand for a better quality of communication service in terms of higher bits rate and the use of spread spectrum technology. One of the challenges for wireless channel characterization is the need to demonstrate an appropriate method to characterize the wireless channel hence, effective channel mitigation technique can be developed to minimize deleterious effect arise from the channel namely the short terms variations due to multipath fading. This propagation environment affects the transmitted signal in terms of scattering, diffraction and reflection as it traveled towards the receiver causing the signals to be received distorted or interfered. Therefore, the central issue in this thesis is to determine appropriate techniques to characterize such a channel. A statistical property was adopted to represent properties of the channel which was categorized under wide sense stationary uncorrelated scattering (WSSUS) conditions. In achieving research objectives, four methods are employed namely Cross Correlation Function (CCF), Cross Ambiguity Function (CAF), Cross Wigner Ville Distribution (CWVD) and Cross S Transform (CST). The transmitted signals used are pass band modulation signals and linear FM signals. CCF and CST can determine the time delay profile of the channel while the other two methods were capable of estimating all the parameters required. Both the CAF and the CWVD are able to describe the signal spreading under multipath condition. The time delay spread is estimated based on peak detection between the paths while Channel Impulse Response (CIR) is estimated based on time marginal. Doppler spread in contrast is estimated from the spread of each path in Doppler axis direction. It was found that all the four methods had estimate the time delay profile correctly while CAF and CWVD with certain specifications had estimated the Doppler spread up to 98% accuracy. CWVD had shown to be better compared to other three methods in terms of computation of the Doppler spread and the duration of the signals used. In conclusion, the methods proposed in the time frequency domain were able to perform the channel characterization under multipath condition regardless of the propagation media encountered and the number of paths existed in the channel

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Performance of Spatial Diversity DCO-OFDM in a Weak Turbulence Underwater Visible Light Communication Channel

    Get PDF
    The performance of underwater visible light communication (UVLC) system is severely affected by absorption, scattering and turbulence. In this article, we study the performance of spectral efficient DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM) in combination with the transceiver spatial diversity in turbulence channel. Based on the approximation of the weighted sum of lognormal random variables (RVs), we derived a theoretical exact bit error rate (BER) for DCO-OFDM systems with spatial diversity. The simulation results are compared with the analytical prediction, confirming the validity of the analysis. It is shown that spatial diversity can effectively reduce the turbulence-induced channel fading. The obtained results can be useful for designing, predicting, and evaluating the DCO-OFDM UVLC system in a weak oceanic turbulence condition
    corecore