24 research outputs found

    Automatic diagnosis of liver steatosis by ultrasound using autoregressive tissue characterization

    Get PDF
    Liver steatosis is mainly a textural abnormality of the hepatic parenchyma due to fat accumulation on the hepatic vesicles. Today, the assessment is subjectively performed by visual inspection. Here a classifier based on features extracted from ultrasound (US) images is described for the automatic diagnostic of this phatology. The proposed algorithm estimates the original ultrasound radio-frequency (RF) envelope signal from which the noiseless anatomic information and the textural information encoded in the speckle noise is extracted. The features characterizing the textural information are the coefficients of the first order autoregressive model that describes the speckle field. A binary Bayesian classifier was implemented and the Bayes factor was calculated. The classification has revealed an overall accuracy of 100%. The Bayes factor could be helpful in the graphical display of the quantitative results for diagnosis purposes.This work was supported by Fundação para a Ciência e Tecnologia (ISR/IST plurianual funding) through the POS Conhecimento Program which includes FEDER funds

    Ultrasound Liver Fibrosis Diagnosis using Multi-indicator guided Deep Neural Networks

    Full text link
    Accurate analysis of the fibrosis stage plays very important roles in follow-up of patients with chronic hepatitis B infection. In this paper, a deep learning framework is presented for automatically liver fibrosis prediction. On contrary of previous works, our approach can take use of the information provided by multiple ultrasound images. An indicator-guided learning mechanism is further proposed to ease the training of the proposed model. This follows the workflow of clinical diagnosis and make the prediction procedure interpretable. To support the training, a dataset is well-collected which contains the ultrasound videos/images, indicators and labels of 229 patients. As demonstrated in the experimental results, our proposed model shows its effectiveness by achieving the state-of-the-art performance, specifically, the accuracy is 65.6%(20% higher than previous best).Comment: Jiali Liu and Wenxuan Wang are equal contributio

    Image texture analysis of transvaginal ultrasound in monitoring ovarian cancer

    Get PDF
    Ovarian cancer has the highest mortality rate of all gynaecologic cancers and is the fifth most common cancer in UK women. It has been dubbed “the silent killer” because of its non-specific symptoms. Amongst various imaging modalities, ultrasound is considered the main modality for ovarian cancer triage. Like other imaging modalities, the main issue is that the interpretation of the images is subjective and observer dependent. In order to overcome this problem, texture analysis was considered for this study. Advances in medical imaging, computer technology and image processing have collectively ramped up the interest of many researchers in texture analysis. While there have been a number of successful uses of texture analysis technique reported, to my knowledge, until recently it has yet to be applied to characterise an ovarian lesion from a B-mode image. The concept of applying texture analysis in the medical field would not replace the conventional method of interpreting images but is simply intended to aid clinicians in making their diagnoses. Five categories of textural features were considered in this study: grey-level co-occurrence matrix (GLCM), Run Length Matrix (RLM), gradient, auto-regressive (AR) and wavelet. Prior to the image classification, the robustness or how well a specific textural feature can tolerate variation arises from the image acquisition and texture extraction process was first evaluated. This includes random variation caused by the ultrasound system and the operator during image acquisition. Other factors include the influence of region of interest (ROI) size, ROI depth, scanner gain setting, and „calliper line‟. Evaluation of scanning reliability was carried out using a tissue-equivalent phantom as well as evaluations of a clinical environment. iii Additionally, the reliability of the ROI delineation procedure for clinical images was also evaluated. An image enhancement technique and semi-automatic segmentation tool were employed in order to improve the ROI delineation procedure. The results of the study indicated that two out of five textural features, GLCM and wavelet, were robust. Hence, these two features were then used for image classification purposes. To extract textural features from the clinical images, two ROI delineation approaches were introduced: (i) the textural features were extracted from the whole area of the tissue of interest, and (ii) the anechoic area within the normal and malignant tissues was excluded from features extraction. The results revealed that the second approach outperformed the first approach: there is a significant difference in the GLCM and wavelet features between the three groups: normal tissue, cysts, and malignant. Receiver operating characteristic (ROC) curve analysis was carried out to determine the discriminatory ability of textural features, which was found to be satisfactory. The principal conclusion was that GLCM and wavelet features can potentially be used as computer aided diagnosis (CAD) tools to help clinicians in the diagnosis of ovarian cancer

    Texture representation using wavelet filterbanks

    Get PDF
    Texture analysis is a fundamental issue in image analysis and computer vision. While considerable research has been carried out in the texture analysis domain, problems relating to texture representation have been addressed only partially and active research is continuing. The vast majority of algorithms for texture analysis make either an explicit or implicit assumption that all images are captured under the same measurement conditions, such as orientation and illumination. These assumptions are often unrealistic in many practical applications;This dissertation addresses the viewpoint-invariance problem in texture classification by introducing a rotated wavelet filterbank. The proposed filterbank, in conjunction with a standard wavelet filterbank, provides better freedom of orientation tuning for texture analysis. This allows one to obtain texture features that are invariant with respect to texture rotation and linear grayscale transformation. In this study, energy estimates of channel outputs that are commonly used as texture features in texture classification are transformed into a set of viewpoint-invariant features. Texture properties that have a physical connection with human perception are taken into account in the transformation of the energy estimates;Experiments using natural texture image sets that have been used for evaluating other successful approaches were conducted in order to facilitate comparison. We observe that the proposed feature set outperformed methods proposed by others in the past. A channel selection method is also proposed to minimize the computational complexity and improve performance in a texture segmentation algorithm. Results demonstrating the validity of the approach are presented using experimental ultrasound tendon images

    HEP-2 CELL FEATURE EXTRACTION USING WAVELET AND INDEPENDENT COMPONENT ANALYSIS

    Get PDF
    Human antibodies work to attack any diseases or bacteria that presented inside the body. However, there is an act when human antibodies tend to attack own body cells or tissues which is called as Anti-nuclear Antibodies (ANA). ANA consist of many different types that can be recognized by its nucleus size and shape. Common method of classifying ANA is by performing Indirect Immunofluorescences (IIF) with HEp-2 cell and observed the pattern under the microscope by naked eye which said to be inaccurate, takes time and subjective. Thus, this project will study on the technique to identify and classify the pattern of ANA automatically. Algorithms are created using MATLAB software and a Graphical User Interface (GUI) is generated for the algorithm to be easily used. This work will focus more on feature extraction using Wavelet and Independent Component Analysis (ICA). The type of Wavelet Transform that will be used is the 2D Discrete Wavelet Transform (2D DWT) and Fast ICA for Independent Component Analysis. Then Support Vector Machine (SVM) is used to perform the classifications parts using the features extracted from both methods. Different features obtained are tested in SVM and the performance of both methods is compared. From the result, it shows that by using the same classifier, Wavelet can provide better features for classification compared to ICA

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography
    corecore