9 research outputs found

    Polarimetric Microwave Radiometer Calibration.

    Full text link
    A polarimetric radiometer is a radiometer with the capability to measure the correlation information between vertically and horizontally polarized electric fields. To better understand and calibrate this type of radiometer, several research efforts have been undertaken. 1) All microwave radiometer measurements of brightness temperature (TB) include an additive noise component. The variance and correlation statistics of the additive noise component of fully polarimetric radiometer measurements are derived from theoretical considerations and the resulting relationships are verified experimentally. It is found that the noise can be correlated among polarimetric channels and that the correlation statistics can vary as a function of the polarization state of the scene under observation. 2) A polarimetric radiometer calibration algorithm has been developed which makes use of the Correlated Noise Calibration Standard (CNCS) to aid in the characterization of microwave polarimetric radiometers and to characterize the non-ideal characteristics of the CNCS itself simultaneously. CNCS has been developed by the Space Physics Research Laboratory of the University of Michigan (SPRL). The calibration algorithm has been verified using the DetMit L-band radiometer. The precision of the calibration is estimated by Monte Carlo simulations. A CNCS forward model has been developed to describe the non-ideal characteristics of the CNCS. Impedance-mismatches between the CNCS and radiometer under test are also considered in the calibration. 3) The calibration technique is demonstrated by applying it to the Engineering Model (EM) of the NASA Aquarius radiometer. CNCS is used to calibrate the Aquarius radiometer – specifically to retrieve its channel phase imbalance and the thermal emission characteristics of transmission line between its antenna and receiver. The impact of errors in calibration of the radiometer channel phase imbalance on Sea Surface Salinity (SSS) retrievals by Aquarius is also analyzed. 4) The CNCS has also been used to calibrate the Breadboard Model (BM) of the L-band NASA Juno radiometer. In order to cover the broad TB dynamic range of the Juno radiometer, a special linearization process has been developed for the CNCS. The method combines multiple Arbitrary Waveform Generator gaussian noise signals with different values of variance to construct the necessary range of TB levelsPh.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61741/1/jzhpeng_1.pd

    Real-Time Detection and Filtering of Radio Frequency Interference On-board a Spaceborne Microwave Radiometer: The CubeRRT Mission

    Get PDF
    The Cubesat Radiometer Radio frequency interference Technology validation mission (CubeRRT) was developed to demonstrate real-time on-board detection and filtering of radio frequency interference (RFI) for wide bandwidth microwave radiometers. CubeRRT’s key technology is its radiometer digital backend (RDB) that is capable of measuring an instantaneous bandwidth of 1 GHz and of filtering the input signal into an estimated total power with and without RFI contributions. CubeRRT’s on-board RFI processing capability dramatically reduces the volume of data that must be downlinked to the ground and eliminates the need for ground-based RFI processing. RFI detection is performed by resolving the input bandwidth into 128 frequency sub-channels, with the kurtosis of each sub-channel and the variations in power across frequency used to detect non-thermal contributions. RFI filtering is performed by removing corrupted frequency sub-channels prior to the computation of the total channel power. The 1 GHz bandwidth input signals processed by the RDB are obtained from the payload’s antenna (ANT) and radiometer front end (RFE) subsystems that are capable of tuning across RF center frequencies from 6 to 40 GHz. The CubeRRT payload was installed into a 6U spacecraft bus provided by Blue Canyon Technologies that provides spacecraft power, communications, data management, and navigation functions. The design, development, integration and test, and on-orbit operations of CubeRRT are described in this paper. The spacecraft was delivered on March 22nd, 2018 for launch to the International Space Station (ISS) on May 21st, 2018. Since its deployment from the ISS on July 13th, 2018, the CubeRRT RDB has completed more than 5000 hours of operation successfully, validating its robustness as an RFI processor. Although CubeRRT’s RFE subsystem ceased operating on September 8th, 2018, causing the RDB input thereafter to consist only of internally generated noise, CubeRRT’s key RDB technology continues to operate without issue and has demonstrated its capabilities as a valuable subsystem for future radiometry missions

    SPICA:revealing the hearts of galaxies and forming planetary systems : approach and US contributions

    Get PDF
    How did the diversity of galaxies we see in the modern Universe come to be? When and where did stars within them forge the heavy elements that give rise to the complex chemistry of life? How do planetary systems, the Universe's home for life, emerge from interstellar material? Answering these questions requires techniques that penetrate dust to reveal the detailed contents and processes in obscured regions. The ESA-JAXA Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is designed for this, with a focus on sensitive spectroscopy in the 12 to 230 micron range. SPICA offers massive sensitivity improvements with its 2.5-meter primary mirror actively cooled to below 8 K. SPICA one of 3 candidates for the ESA's Cosmic Visions M5 mission, and JAXA has is committed to their portion of the collaboration. ESA will provide the silicon-carbide telescope, science instrument assembly, satellite integration and testing, and the spacecraft bus. JAXA will provide the passive and active cooling system (supporting the

    The Apertif Surveys:The First Six Months

    Get PDF
    Apertif is a new phased-array feed for the Westerbork Synthesis Radio Telescope (WSRT), greatly increasing its field of view and turning it into a natural survey instrument. In July 2019, the Apertif legacy surveys commenced; these are a time-domain survey and a two-tiered imaging survey, with a shallow and medium-deep component. The time-domain survey searches for new (millisecond) pulsars and fast radio bursts (FRBs). The imaging surveys provide neutral hydrogen (HI), radio continuum and polarization data products. With a bandwidth of 300 MHz, Apertif can detect HI out to a redshift of 0.26. The key science goals to be accomplished by Apertif include localization of FRBs (including real-time public alerts), the role of environment and interaction on galaxy properties and gas removal, finding the smallest galaxies, connecting cold gas to AGN, understanding the faint radio population, and studying magnetic fields in galaxies. After a proprietary period, survey data products will be publicly available through the Apertif Long Term Archive (ALTA, https://alta.astron.nl). I will review the progress of the surveys and present the first results from the Apertif surveys, including highlighting the currently available public data
    corecore