43 research outputs found

    Channel estimation and tracking algorithms for vehicle to vehicle communications

    Get PDF
    The vehicle-to-vehicle (V2V) communications channels are highly time-varying, making reliable communication difficult. This problem is particularly challenging because the standard of the V2V communications (IEEE 802.11p standard) is based on the WLAN IEEE 802.11a standard, which was designed for indoor, relatively stationary channels; so the IEEE 802.11p standard is not customized for outdo or, highly mobile non-stationary channels. In this thesis,We propose Channel estimation and tracking algorithms that are suitable for highly-time varying channels. The proposed algorithms utilize the finite alphabet property of the transmitted symbol, time domain truncation, decision-directed as well as pilot information. The proposed algorithm s improve the overall system performance in terms of bit error rates, enabling the system to achieve higher data rates and larger packet lengths at high relative velocities. Simulation results show that the proposed algorithms achieve improved performance for all the V2V channel models with different velocities, and for different modulation schemes and packet sizes as compared to the conventional least squares and other previously proposed channel estimation techniques for V2V channels

    Raptor code for wireless ad hoc vehicular safety broadcast

    Get PDF

    A Survey on Resource Allocation in Vehicular Networks

    Get PDF
    Vehicular networks, an enabling technology for Intelligent Transportation System (ITS), smart cities, and autonomous driving, can deliver numerous on-board data services, e.g., road-safety, easy navigation, traffic efficiency, comfort driving, infotainment, etc. Providing satisfactory Quality of Service (QoS) in vehicular networks, however, is a challenging task due to a number of limiting factors such as erroneous and congested wireless channels (due to high mobility or uncoordinated channel-access), increasingly fragmented and congested spectrum, hardware imperfections, and anticipated growth of vehicular communication devices. Therefore, it will be critical to allocate and utilize the available wireless network resources in an ultra-efficient manner. In this paper, we present a comprehensive survey on resource allocation schemes for the two dominant vehicular network technologies, e.g. Dedicated Short Range Communications (DSRC) and cellular based vehicular networks. We discuss the challenges and opportunities for resource allocations in modern vehicular networks and outline a number of promising future research directions

    Energy Efficiency in Communications and Networks

    Get PDF
    The topic of "Energy Efficiency in Communications and Networks" attracts growing attention due to economical and environmental reasons. The amount of power consumed by information and communication technologies (ICT) is rapidly increasing, as well as the energy bill of service providers. According to a number of studies, ICT alone is responsible for a percentage which varies from 2% to 10% of the world power consumption. Thus, driving rising cost and sustainability concerns about the energy footprint of the IT infrastructure. Energy-efficiency is an aspect that until recently was only considered for battery driven devices. Today we see energy-efficiency becoming a pervasive issue that will need to be considered in all technology areas from device technology to systems management. This book is seeking to provide a compilation of novel research contributions on hardware design, architectures, protocols and algorithms that will improve the energy efficiency of communication devices and networks and lead to a more energy proportional technology infrastructure

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations

    Contention techniques for opportunistic communication in wireless mesh networks

    Get PDF
    Auf dem Gebiet der drahtlosen Kommunikation und insbesondere auf den tieferen Netzwerkschichten sind gewaltige Fortschritte zu verzeichnen. Innovative Konzepte und Technologien auf der physikalischen Schicht (PHY) gehen dabei zeitnah in zelluläre Netze ein. Drahtlose Maschennetzwerke (WMNs) können mit diesem Innovationstempo nicht mithalten. Die Mehrnutzer-Kommunikation ist ein Grundpfeiler vieler angewandter PHY Technologien, die sich in WMNs nur ungenügend auf die etablierte Schichtenarchitektur abbilden lässt. Insbesondere ist das Problem des Scheduling in WMNs inhärent komplex. Erstaunlicherweise ist der Mehrfachzugriff mit Trägerprüfung (CSMA) in WMNs asymptotisch optimal obwohl das Verfahren eine geringe Durchführungskomplexität aufweist. Daher stellt sich die Frage, in welcher Weise das dem CSMA zugrunde liegende Konzept des konkurrierenden Wettbewerbs (engl. Contention) für die Integration innovativer PHY Technologien verwendet werden kann. Opportunistische Kommunikation ist eine Technik, die die inhärenten Besonderheiten des drahtlosen Kanals ausnutzt. In der vorliegenden Dissertation werden CSMA-basierte Protokolle für die opportunistische Kommunikation in WMNs entwickelt und evaluiert. Es werden dabei opportunistisches Routing (OR) im zustandslosen Kanal und opportunistisches Scheduling (OS) im zustandsbehafteten Kanal betrachtet. Ziel ist es, den Durchsatz von elastischen Paketflüssen gerecht zu maximieren. Es werden Modelle für Überlastkontrolle, Routing und konkurrenzbasierte opportunistische Kommunikation vorgestellt. Am Beispiel von IEEE 802.11 wird illustriert, wie der schichtübergreifende Entwurf in einem Netzwerksimulator prototypisch implementiert werden kann. Auf Grundlage der Evaluationsresultate kann der Schluss gezogen werden, dass die opportunistische Kommunikation konkurrenzbasiert realisierbar ist. Darüber hinaus steigern die vorgestellten Protokolle den Durchsatz im Vergleich zu etablierten Lösungen wie etwa DCF, DSR, ExOR, RBAR und ETT.In the field of wireless communication, a tremendous progress can be observed especially at the lower layers. Innovative physical layer (PHY) concepts and technologies can be rapidly assimilated in cellular networks. Wireless mesh networks (WMNs), on the other hand, cannot keep up with the speed of innovation at the PHY due to their flat and decentralized architecture. Many innovative PHY technologies rely on multi-user communication, so that the established abstraction of the network stack does not work well for WMNs. The scheduling problem in WMNs is inherent complex. Surprisingly, carrier sense multiple access (CSMA) in WMNs is asymptotically utility-optimal even though it has a low computational complexity and does not involve message exchange. Hence, the question arises whether CSMA and the underlying concept of contention allows for the assimilation of advanced PHY technologies into WMNs. In this thesis, we design and evaluate contention protocols based on CSMA for opportunistic communication in WMNs. Opportunistic communication is a technique that relies on multi-user diversity in order to exploit the inherent characteristics of the wireless channel. In particular, we consider opportunistic routing (OR) and opportunistic scheduling (OS) in memoryless and slow fading channels, respectively. We present models for congestion control, routing and contention-based opportunistic communication in WMNs in order to maximize both throughput and fairness of elastic unicast traffic flows. At the instance of IEEE 802.11, we illustrate how the cross-layer algorithms can be implemented within a network simulator prototype. Our evaluation results lead to the conclusion that contention-based opportunistic communication is feasible. Furthermore, the proposed protocols increase both throughput and fairness in comparison to state-of-the-art approaches like DCF, DSR, ExOR, RBAR and ETT

    A game-theoretic approach to power management in MIMO-OFDM ad hoc networks

    Get PDF
    With the increasing demand for wireless services, the efficient use of spectral resources is of great importance. MIMO-OFDM communication systems hold great promise in using radio spectrum efficiently while power control will improve energy efficiency. Existing approaches such as multiuser water-filling and gradient projection assign a fixed transmit power to each link and each transmitter node allocates power among different antennas in order to optimize the link capacity or sum data rate. If bad channel conditions exist in some communicating links, these methods are not energy efficient.We propose a new technique for power management and interference reduction based upon a game theoretic approach. Utility functions are designed and power allocation in each link is built into a non-cooperative game. To avoid unnecessary power transmission under poor channel conditions, a mechanism of shutting down inefficient links is integrated into the game theoretic approach. Two kinds of link shut-down mechanism are presented in this dissertation. The first one is called hard shut-down, because once the transmit node decides to shut down, the node will not resume transmission no matter how the interfering channels change. The other mechanism is called soft shut-down, in which the transmit power is related to the pricing factor of that link and the interference it is exposed to. With this mechanism, the transmit power can change adaptively in response to the condition of interference.We also investigate the problem of subcarrier assignment and power distribution among multiple antennas for point-to-point links in a network without base stations. A subcarrier assignment scheme is proposed which selects a set of subcarriers for each link so that high data rate can be achieved and co-channel interference can be mitigated. The power management in a MIMO-OFDM ad hoc network is also built into a non-cooperative game in which each link calculates its optimal power allocation vector in order to maximize the net utility. The designed utility function facilitates subcarrier assignment schemes by using a tunable pricing factor, which helps a link to admit or drop subcarriers in a soft and adaptive fashion.Ph.D., Electrical Engineering -- Drexel University, 200

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications
    corecore