969 research outputs found

    Chimera states in pulse coupled neural networks: the influence of dilution and noise

    Get PDF
    We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population is fully synchronized and the other is in a state of partial synchronization (PS) as well as generalized chimera states, where both populations are in PS, but with different levels of synchronization. Symmetric macroscopic states are also present, ranging from quasi-periodic motions, to collective chaos, from splay states to population anti-phase partial synchronization. We then investigate the influence disorder, random link removal or noise, on the dynamics of collective solutions in this model. As a result, we observe that broken symmetry chimera-like states, with both populations partially synchronized, persist up to 80 \% of broken links and up to noise amplitudes 8 \% of threshold-reset distance. Furthermore, the introduction of disorder on symmetric chaotic state has a constructive effect, namely to induce the emergence of chimera-like states at intermediate dilution or noise level.Comment: 15 pages, 7 figure, contribution for the Workshop "Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT" held in Turin (Italy) in September 201

    Many Attractors, Long Chaotic Transients, and Failure in Small-World Networks of Excitable Neurons

    Get PDF
    We study the dynamical states that emerge in a small-world network of recurrently coupled excitable neurons through both numerical and analytical methods. These dynamics depend in large part on the fraction of long-range connections or `short-cuts' and the delay in the neuronal interactions. Persistent activity arises for a small fraction of `short-cuts', while a transition to failure occurs at a critical value of the `short-cut' density. The persistent activity consists of multi-stable periodic attractors, the number of which is at least on the order of the number of neurons in the network. For long enough delays, network activity at high `short-cut' densities is shown to exhibit exceedingly long chaotic transients whose failure-times averaged over many network configurations follow a stretched exponential. We show how this functional form arises in the ensemble-averaged activity if each network realization has a characteristic failure-time which is exponentially distributed.Comment: 14 pages 23 figure

    Bistable Chimera Attractors on a Triangular Network of Oscillator Populations

    Full text link
    We study a triangular network of three populations of coupled phase oscillators with identical frequencies. The populations interact nonlocally, in the sense that all oscillators are coupled to one another, but more weakly to those in neighboring populations than to those in their own population. This triangular network is the simplest discretization of a continuous ring of oscillators. Yet it displays an unexpectedly different behavior: in contrast to the lone stable chimera observed in continuous rings of oscillators, we find that this system exhibits \emph{two coexisting stable chimeras}. Both chimeras are, as usual, born through a saddle node bifurcation. As the coupling becomes increasingly local in nature they lose stability through a Hopf bifurcation, giving rise to breathing chimeras, which in turn get destroyed through a homoclinic bifurcation. Remarkably, one of the chimeras reemerges by a reversal of this scenario as we further increase the locality of the coupling, until it is annihilated through another saddle node bifurcation.Comment: 12 pages, 5 figure

    Classification of coupled dynamical systems with multiple delays: Finding the minimal number of delays

    Get PDF
    In this article we study networks of coupled dynamical systems with time-delayed connections. If two such networks hold different delays on the connections it is in general possible that they exhibit different dynamical behavior as well. We prove that for particular sets of delays this is not the case. To this aim we introduce a componentwise timeshift transformation (CTT) which allows to classify systems which possess equivalent dynamics, though possibly different sets of connection delays. In particular, we show for a large class of semiflows (including the case of delay differential equations) that the stability of attractors is invariant under this transformation. Moreover we show that each equivalence class which is mediated by the CTT possesses a representative system in which the number of different delays is not larger than the cycle space dimension of the underlying graph. We conclude that the 'true' dimension of the corresponding parameter space of delays is in general smaller than it appears at first glance

    A simple method for detecting chaos in nature

    Full text link
    Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. Moreover, chaos is predicted to play diverse functional roles in living systems. A method for detecting chaos from empirical measurements should therefore be a key component of the biologist's toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break down for common edge cases, making it difficult to detect chaos in domains, like biology, where measurements are noisy. However, newer tools promise to overcome these limitations. Here, we combine several such tools into an automated processing pipeline, and show that our pipeline can detect the presence (or absence) of chaos in noisy recordings, even for difficult edge cases. As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as some have proposed, and instead reflects a stochastic process in both health and disease. Our tool is easy-to-use and freely available

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Lag Synchronization in Coupled Multistable van der Pol-Duffing Oscillators

    Get PDF
    We consider the system of externally excited identical van der Pol-Duffing oscillators unidirectionally coupled in a ring. When the coupling is introduced, each of the oscillator’s trajectories is on different attractor. We study the changes in the dynamics due to the increase in the coupling coefficient. Studying the phase of the oscillators, we calculate the parameter value for which we obtain the antiphase lag synchronization of the system and also the bifurcation values for which we observe qualitative changes in the dynamics of already synchronized system. We give evidence that lag synchronization is typical for coupled multistable systems
    corecore