927 research outputs found

    Mining Techniques For Invariants In Cloud Computing

    Get PDF
    The increasing popularity of Software as a Service (SaaS) stresses the need of solutions to predict failures and avoid service interruptions, which invariably result in SLA violations and severe loss of revenue. A promising approach to continuously monitor the correct functioning of the system is to check the execution conformance to a set of invariants, i.e., properties that must hold when the system is deemed to run correctly. This paper proposes a technique to spot a true anomalies by the use of various data mining techniques like clustering, association rule and decision tree algorithms help in finding the hidden and previously unknown information from the database. We assess the techniques in two invariants’ applications, namely executions characterization and anomaly detection, using the metrics of coverage, recall and precision. In this work two real-world datasets have been used - the publicly available Google datacenter dataset and a dataset of a commercial SaaS utility computing platform - for detecting the anomalies

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    ARCHETYPES OF DIGITAL BUSINESS MODELS IN LOGISTICS START-UPS

    Get PDF
    Our work develops an archetypical representation of current digital business models of Start-Ups in the logistics sector. In order to achieve our goal, we analyze the business models of 125 Start-Ups. We draw our sample from the Start-Up database AngelList and focus on platform-driven businesses. We chose Start-Ups as they often are at the forefront of innovation and thus have a high likelihood of operating digital business models. Following well-established methodological guidelines, we construct a taxonomy of digital business models in multiple iterations. We employ different algorithms for cluster analysis to find and generate clusters based on commonalities between the business models across the dimensions and characteristics of the taxonomy. Ultimately, we use the dominant features of the emerging patterns within the clusters to derive archetypes

    A Taxonomy of Quality Metrics for Cloud Services

    Full text link
    [EN] A large number of metrics with which to assess the quality of cloud services have been proposed over the last years. However, this knowledge is still dispersed, and stakeholders have little or no guidance when choosing metrics that will be suitable to evaluate their cloud services. The objective of this paper is, therefore, to systematically identify, taxonomically classify, and compare existing quality of service (QoS) metrics in the cloud computing domain. We conducted a systematic literature review of 84 studies selected from a set of 4333 studies that were published from 2006 to November 2018. We specifically identified 470 metric operationalizations that were then classified using a taxonomy, which is also introduced in this paper. The data extracted from the metrics were subsequently analyzed using thematic analysis. The findings indicated that most metrics evaluate quality attributes related to performance efficiency (64%) and that there is a need for metrics that evaluate other characteristics, such as security and compatibility. The majority of the metrics are used during the Operation phase of the cloud services and are applied to the running service. Our results also revealed that metrics for cloud services are still in the early stages of maturity only 10% of the metrics had been empirically validated. The proposed taxonomy can be used by practitioners as a guideline when specifying service level objectives or deciding which metric is best suited to the evaluation of their cloud services, and by researchers as a comprehensive quality framework in which to evaluate their approaches.This work was supported by the Spanish Ministry of Science, Innovation and Universities through the Adapt@Cloud Project under Grant TIN2017-84550-R. The work of Ximena Guerron was supported in part by the Universidad Central del Ecuador (UCE), and in part by the Banco Central del Ecuador.Guerron, X.; Abrahao Gonzales, SM.; Insfran, E.; Fernández-Diego, M.; González-Ladrón-De-Guevara, F. (2020). A Taxonomy of Quality Metrics for Cloud Services. IEEE Access. 8:131461-131498. https://doi.org/10.1109/ACCESS.2020.3009079S131461131498
    • …
    corecore