7,033 research outputs found

    Smooth analysis of the condition number and the least singular value

    Full text link
    Let \a be a complex random variable with mean zero and bounded variance. Let NnN_{n} be the random matrix of size nn whose entries are iid copies of \a and MM be a fixed matrix of the same size. The goal of this paper is to give a general estimate for the condition number and least singular value of the matrix M+NnM + N_{n}, generalizing an earlier result of Spielman and Teng for the case when \a is gaussian. Our investigation reveals an interesting fact that the "core" matrix MM does play a role on tail bounds for the least singular value of M+NnM+N_{n} . This does not occur in Spielman-Teng studies when \a is gaussian. Consequently, our general estimate involves the norm M\|M\|. In the special case when M\|M\| is relatively small, this estimate is nearly optimal and extends or refines existing results.Comment: 20 pages. An erratum to the published version has been adde

    Trade-offs Between Performance, Data Rate and Transmission Delay in Networked Control Systems

    Get PDF

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    Ground State Spin Logic

    Full text link
    Designing and optimizing cost functions and energy landscapes is a problem encountered in many fields of science and engineering. These landscapes and cost functions can be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach based on group theory and symmetries, we examine the embedding of Boolean logic gates into the ground state subspace of such spin systems. We describe parameterized families of diagonal Hamiltonians and symmetry operations which preserve the ground state subspace encoding the truth tables of Boolean formulas. The ground state embeddings of adder circuits are used to illustrate how gates are combined and simplified using symmetry. Our work is relevant for experimental demonstrations of ground state embeddings found in both classical optimization as well as adiabatic quantum optimization.Comment: 6 pages + 3 pages appendix, 7 figures, 1 tabl

    Analysis and Synthesis of Digital Dyadic Sequences

    Full text link
    We explore the space of matrix-generated (0, m, 2)-nets and (0, 2)-sequences in base 2, also known as digital dyadic nets and sequences. In computer graphics, they are arguably leading the competition for use in rendering. We provide a complete characterization of the design space and count the possible number of constructions with and without considering possible reorderings of the point set. Based on this analysis, we then show that every digital dyadic net can be reordered into a sequence, together with a corresponding algorithm. Finally, we present a novel family of self-similar digital dyadic sequences, to be named ξ\xi-sequences, that spans a subspace with fewer degrees of freedom. Those ξ\xi-sequences are extremely efficient to sample and compute, and we demonstrate their advantages over the classic Sobol (0, 2)-sequence.Comment: 17 pages, 11 figures. Minor improvement of exposition; references to earlier proofs of Theorems 3.1 and 3.3 adde

    Volumes of Compact Manifolds

    Get PDF
    We present a systematic calculation of the volumes of compact manifolds which appear in physics: spheres, projective spaces, group manifolds and generalized flag manifolds. In each case we state what we believe is the most natural scale or normalization of the manifold, that is, the generalization of the unit radius condition for spheres. For this aim we first describe the manifold with some parameters, set up a metric, which induces a volume element, and perform the integration for the adequate range of the parameters; in most cases our manifolds will be either spheres or (twisted) products of spheres, or quotients of spheres (homogeneous spaces). Our results should be useful in several physical instances, as instanton calculations, propagators in curved spaces, sigma models, geometric scattering in homogeneous manifolds, density matrices for entangled states, etc. Some flag manifolds have also appeared recently as exceptional holonomy manifolds; the volumes of compact Einstein manifolds appear in String theory.Comment: 26 pages, no figures; updated addresses and bibliography. To be published in Rep. Math. Phy
    corecore