1,091 research outputs found

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    First insights on the potential of Sentinel-1 for landslides detection

    Get PDF
    This paper illustrates the potential of Sentinel-1 for landslide detection, Accepted 23 March 2016 mapping and characterization with the aim of updating inventory maps and monitoring landslide activity. The study area is located in Molise, one of the smallest regions of Italy, where landslide processes are frequent. The results achieved by integrating Differential Synthetic Aperture Radar Interferometry (DInSAR) deformation maps and time series, and Geographical Information System (GIS) multilayer analysis (optical, geological, geomorphological, etc.) are shown. The adopted methodology is described followed by an analysis of future perspectives. Sixty-two landslides have been detected, thus allowing the updating of pre-existing landslide inventory maps. The results of our ongoing research show that Sentinel-1 might represent a significant improvement in terms of exploitation of SAR data for landslide mapping and monitoring due to both the shorter revisit time (up to 6 days in the close future) and the wavelength used, which determine an higher coherence compared to other SAR sensors

    Post-failure evolution analysis of a rainfall-triggered landslide by multi-temporal interferometry SAR approaches integrated with geotechnical analysis

    Get PDF
    Persistent Scatterers Interferometry (PSI) represents one of the most powerful techniques for Earth's surface deformation processes' monitoring, especially for long-term evolution phenomena. In this work, a dataset of 34 TerraSAR-X StripMap images (October 2013–October 2014) has been processed by two PSI techniques - Coherent Pixel Technique-Temporal Sublook Coherence (CPT-TSC) and Small Baseline Subset (SBAS) - in order to study the evolution of a slow-moving landslide which occurred on February 23, 2012 in the Papanice hamlet (Crotone municipality, southern Italy) and induced by a significant rainfall event (185 mm in three days). The mass movement caused structural damage (buildings' collapse), and destruction of utility lines (gas, water and electricity) and roads. The results showed analogous displacement rates (30–40 mm/yr along the Line of Sight – LOS-of the satellite) with respect to the pre-failure phase (2008–2010) analyzed in previous works. Both approaches allowed detect the landslide-affected area, however the higher density of targets identified by means of CPT-TSC enabled to analyze in detail the slope behavior in order to design possible mitigation interventions. For this aim, a slope stability analysis has been carried out, considering the comparison between groundwater oscillations and time-series of displacement. Hence, the crucial role of the interaction between rainfall and groundwater level has been inferred for the landslide triggering. In conclusion, we showed that the integration of geotechnical and remote sensing approaches can be seen as the best practice to support stakeholders to design remedial works.Peer ReviewedPostprint (author's final draft

    Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy)

    Get PDF
    AbstractThe historic town of San Leo (Emilia Romagna Region, northern Italy) is located on top of an isolated rock massif above the Marecchia River valley hillside. On February 27th 2014, a northeastern sector of the massif collapsed; minor structural damages were reported in the town and a few buildings were evacuated as a precautionary measure. Although no fatalities occurred and the San Leo cultural heritage suffered no damage, minor rock fall events kept taking place on the newly formed rock wall, worsening this hazardous situation. In this framework, a monitoring system based on remote sensing techniques, such as radar interferometry (both spaceborne and ground-based) and terrestrial laser scanning, was planned in order to monitor the ground deformation of the investigated area and to evaluate the residual risk. In this paper the main outlines of a 1-year monitoring activity are described, including a pre-event analysis of possible landslide precursors and a post-event analysis of the displacements of both the collapse-affected rock wall sector and the rock fall deposits

    Characterization of Ground Deformation Associated with Shallow Groundwater Processes Using Satellite Radar Interferometry

    Get PDF
    Shallow groundwater processes maylead to ground deformation and even geohazards. With the features of day-and-night accessibility and large-scale coverage, time-series interferometric synthetic aperture radar (InSAR) has proven a useful tool for mapping the deformation over various landscapes at cm to mm level with weekly to monthly updates. However, it has limitations such as, decorrelation,atmospheric artifacts, topographic errors, andunwrapping errors, in particular for the hilly, vegetated, and complicated deformation patterns. In this dissertation, I focus on characterizing the ground deformation over landslides, aquifer systems, and mine tailings impoundment, using the designed advanced time-series InSAR strategy, as well as theinterdisciplinary knowledge of geodesy, hydrology, geophysics, and geology. Northwestern USA has been exposed to extreme landslide hazards due to steep terrain, high precipitation, and loose root support after wildfire. I characterize the rainfall-triggered movements of Crescent Lake landslide, Washington State. The seasonal deformation at the lobe, with larger magnitudes than the downslope riverbank, suggests an amplified hydrological loading effect due to a thicker unconsolidated zone. High-temporal-resolution InSAR and GPS data reveal dynamic landslide motions. Threshold rainfall intensities and durations wet seasons have been associated with observed movement upon shearing: antecedent rainfall triggered precursory slope-normal subsidence, and the consequent increase in pore pressure at the basal surface reduces friction and instigates downslope slip over the course of less than one month. In addition, a quasi-three-dimensional deformation field is created using multiple spaceborne InSAR observations constrained by the topographical slope, and is further used to invert for the complex geometry of landslide basal surface based on mass conservation. Aquifer skeletons deform in response to hydraulic head changes with various time scales of delay and sensitivity. I investigate the spatio-temporal correlation among deformation, hydrological records and earthquake records over Salt Lake Valley, Utah State. A clear long-term and seasonal correlation exists between surface uplift/subsidence and groundwater recharge/discharge, allowing me to quantify hydrogeological properties. Long-term uplift reflects the net pore pressure increase associated with prolonged water recharge, probably decades ago. The distributions of previously and newly mapped faults suggest that the faultsdisrupt the groundwater flow andpartition hydrological units. Mine tailings gradual settle as the pore pressure dissipates and the terrain subsides, andtailings embankment failures can be extremely hazardous. I investigate the dynamics of consolidation settlement over the tailings impoundment in the vicinity of Great Salt Lake, Utah State, as well as its associated impacts to the surrounding infrastructures. Largest subsidence has been observed around the low-permeable decant pond clay at the northeast corner.The geotechnical consolidation model reveals and predicts the long-term exponentially decaying settlement process. My studies have demonstrated that InSAR methods can advance our understanding about the potential anthropogenic impacts and natural hydrological modulations on various geodynamic settings in geodetic time scale

    Monitoring of remedial works performance on landslide-affected areas through ground- and satellite-based techniques

    Get PDF
    Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have repeatedly proved to be an effective tool for built environments monitoring in areas affected by geological hazards. This paper describes how the Coherent Pixel Technique (CPT) approach has been successfully applied to assess the response of an unstable slope to the different phases of remedial works following a landslide event. The CPT technique was performed on 59 COSMO-SkyMed images obtained between May 2011 and August 2016 and centred on the Quercianella settlement (a small hamlet of Livorno municipality, Tuscany, Italy), where the reactivation of a dormant shallow slide had occurred in March 2011 and, hereafter, a geotechnical intervention, designed with the aim of mitigating the risks, has been conducted from August 2013, lasting thirteen months. The time series of CPT results show a deformation pattern with sudden accelerations (up to 21 mm in few months) corresponding to the beginning of the interventions, during which the area has been excavated to install a drainage well, followed by mild decelerations resulting from the stabilization of the area after the conclusion of the works. In particular, the integration of ground-based subsurface monitoring (inclinometers and piezometers) and DInSAR superficial data has provided consistent results for landslide characterization and helped defining the state of activity and the areal distribution of the sliding surface. Moreover, the performance of remedial works in the landslide-affected area has been observed, showing stabilization in the upper part of the hamlet and the ongoing movement in the lower part. The combined monitoring system also led the geotechnical company in charge of remedial works to design further stabilization works in order to preserve buildings and roads in the moving area. Therefore, the integration of remote sensing techniques and in situ instruments represents a timely and cost-efficient solution for intervention works monitoring, opening new perspectives on designing engineering solutions for the stabilization of unstable slopes

    Updated landslide inventory of the area between the Furiano and Rosmarino creeks (Sicily, Italy)

    Get PDF
    A 1:10,000 scale landslide inventory map has been prepared for the area between the Furiano and Rosmarino creeks, in the Nebrodi Mountains (north-eastern Sicily, Italy), a territory highly prone to slope failures, due to the local geological and geomorphological settings and intense rainfall. The landslide inventory database included within the Hydrogeological Setting Plan of the Sicily Region has been used as a starting point for this work. The updated inventory map has been compiled through a combination of conventional approaches (i.e. aerial photo-interpretation and field surveys) and new remote sensing techniques (ground deformation measurements obtained by interferometric analysis of satellite Synthetic Aperture Radar images). The new landslide inventory consists of 566 events, classified according to their typology and state of activity

    Towards the optimal Pixel size of dem for automatic mapping of landslide areas

    Get PDF
    Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were mapped based on four DEMs generated at 1m, 2m, 5m and 10m spatial resolution from airborne laser scanning (ALS) data. The performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1m DEM resolution on micro-topography scale, can show different results. The best performance was found at 5m DEM-resolution for FFNN and 1m DEM resolution for results. The best performance was found to be using 5m DEM-resolution for FFNN and 1m DEM resolution for ML classification
    corecore